LamaAl commited on
Commit
315abfa
1 Parent(s): a1a0ded

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #Import transformers and gradio
2
+ import transformers
3
+ import gradio as gr
4
+ import git
5
+
6
+ #Load arabert preprocessor
7
+ import git
8
+ git.Git("arabert").clone("https://github.com/aub-mind/arabert")
9
+ from arabert.preprocess import ArabertPreprocessor
10
+ arabert_prep = ArabertPreprocessor(model_name="bert-base-arabert", keep_emojis=False)
11
+
12
+
13
+ #Load Model
14
+ from transformers import EncoderDecoderModel, AutoTokenizer
15
+ tokenizer = AutoTokenizer.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
16
+ model = EncoderDecoderModel.from_pretrained("tareknaous/bert2bert-empathetic-response-msa")
17
+ model.eval()
18
+
19
+ def generate_response(text, minimum_length, k, p, temperature):
20
+ text_clean = arabert_prep.preprocess(text)
21
+ inputs = tokenizer.encode_plus(text_clean,return_tensors='pt')
22
+ outputs = model.generate(input_ids = inputs.input_ids,
23
+ attention_mask = inputs.attention_mask,
24
+ do_sample = True,
25
+ min_length=minimum_length,
26
+ top_k = k,
27
+ top_p = p,
28
+ temperature = temperature)
29
+ preds = tokenizer.batch_decode(outputs)
30
+ response = str(preds)
31
+ response = response.replace("\'", '')
32
+ response = response.replace("[[CLS]", '')
33
+ response = response.replace("[SEP]]", '')
34
+ response = str(arabert_prep.desegment(response))
35
+ return response
36
+
37
+ title = 'BERT2BERT Response Generation in Arabic'
38
+ description = 'This demo is for a BERT2BERT model trained for single-turn open-domain dialogue response generation in Modern Standard Arabic'
39
+ gr.Interface(fn=generate_response,
40
+ inputs=[
41
+ gr.inputs.Textbox(),
42
+ gr.inputs.Slider(5, 20, step=1, label='Minimum Output Length'),
43
+ gr.inputs.Slider(0, 1000, step=10, label='Top-K'),
44
+ gr.inputs.Slider(0, 1, step=0.1, label='Top-P'),
45
+ gr.inputs.Slider(0, 3, step=0.1, label='Temperature'),
46
+ ],
47
+ outputs="text",
48
+ title=title,
49
+ description=description).launch()