Spaces:
Running
Running
File size: 1,569 Bytes
eaf1410 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
from pathlib import Path
import torch
import gradio as gr
from torch import nn
from PIL import Image
import numpy as np
LABELS = Path('class_names.txt').read_text().splitlines()
model = nn.Sequential(
nn.Conv2d(1, 32, 3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, 3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1152, 256),
nn.ReLU(),
nn.Linear(256, len(LABELS)),
)
state_dict = torch.load('pytorch_model.bin', map_location='cpu')
model.load_state_dict(state_dict, strict=False)
model.eval()
def predict(im_dict):
im_raw = im_dict['composite'][:,:,3]
img = Image.fromarray(im_raw)
img_small = img.resize([24,28],resample=0)
im = np.array(np.uint8(img_small))
im = np.transpose(im,(1,0))
x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
with torch.no_grad():
out = model(x)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
values, indices = torch.topk(probabilities, 5)
return {LABELS[i]: v.item() for i, v in zip(indices, values)}
interface = gr.Interface(
predict,
inputs="sketchpad",
outputs='label',
title="Sketch Recognition",
description="Who wants to play Pictionary? Draw a common object like a shovel or a laptop, and the algorithm will guess in real time!",
article = "<p style='text-align: center'>Sketch Recognition | Demo Model</p>",
live=True)
interface.launch(debug=True) |