File size: 9,784 Bytes
cc9204b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d940272
cc9204b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import re
import gradio as gr
import torch
import torch.nn.functional as F
from torch.optim import Adam
from torchvision.transforms import transforms as T
import clip
from tr0n.config import parse_args
from tr0n.modules.models.model_stylegan import Model
from tr0n.modules.models.loss import AugCosineSimLatent
from tr0n.modules.optimizers.sgld import SGLD
from bad_words import bad_words

device = "cuda" if torch.cuda.is_available() else "cpu"
model_modes = {
    "text": {
        "checkpoint": "https://huggingface.co/Layer6/tr0n-stylegan2-clip/resolve/main/tr0n-stylegan2-clip-text.pth",
        },
    "image": {
        "checkpoint": "https://huggingface.co/Layer6/tr0n-stylegan2-clip/resolve/main/tr0n-stylegan2-clip-image.pth",
    }
}

os.environ['TOKENIZERS_PARALLELISM'] = "false"


# set config params
config = parse_args(is_demo=True)
config_vars = vars(config)
config_vars["stylegan_gen"] = "sg2-ffhq-1024"
config_vars["with_gmm"] = True
config_vars["num_mixtures"] = 10


model = Model(config, device, None)
model.to(device)
model.eval()
for p in model.translator.parameters():
    p.requires_grad = False
loss = AugCosineSimLatent()


transforms_image = T.Compose([
    T.Resize(224, interpolation=T.InterpolationMode.BICUBIC),
    T.CenterCrop(224),
    T.ToTensor(),
    T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
    

checkpoint_text = torch.hub.load_state_dict_from_url(model_modes["text"]["checkpoint"], map_location="cpu")
translator_state_dict_text = checkpoint_text['translator_state_dict']
checkpoint_image = torch.hub.load_state_dict_from_url(model_modes["image"]["checkpoint"], map_location="cpu")
translator_state_dict_image = checkpoint_image['translator_state_dict']

# default
model.translator.load_state_dict(translator_state_dict_text)


css = """
    a {
        display: inline-block;
        color: black !important;
        text-decoration: none !important;
    }
    #image-gen {
        height: 256px;
        width: 256px;
        margin-left: auto;
        margin-right: auto;
    }
"""


def _slerp(val, low, high):
        low_norm = low / torch.norm(low, dim=1, keepdim=True)
        high_norm = high / torch.norm(high, dim=1, keepdim=True)
        omega = torch.acos((low_norm*high_norm).sum(1))
        so = torch.sin(omega)
        res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
        return res


def model_mode_text_select():
    model.translator.load_state_dict(translator_state_dict_text)


def model_mode_image_select():
    model.translator.load_state_dict(translator_state_dict_image)


def text_to_face_generate(text):
    if text == "":
        raise gr.Error("You need to provide to provide a prompt.")

    for word in bad_words:
        if re.search(rf"\b{word}\b", text):
            raise gr.Error("Unsafe content found. Please try again with a different prompt.")

    text_tok = clip.tokenize([text], truncate=True).to(device)

    # initialize optimization from the translator's output
    with torch.no_grad():
        target_clip_latent, w_mixture_logits, w_means = model(x=text_tok, x_type='text', return_after_translator=True, no_sample=True)
        pi = w_mixture_logits.unsqueeze(-1).repeat(1, 1, w_means.shape[-1]) # 1 x num_mixtures x w_dim
        w = w_means # 1 x num_mixtures x w_dim

    w.requires_grad = True
    pi.requires_grad = True

    optimizer_w = SGLD((w,), lr=1e-1, momentum=0.99, noise_std=0.01, device=device)
    optimizer_pi = Adam((pi,), lr=5e-3)

    # optimization
    for _ in range(100):
        soft_pi = F.softmax(pi, dim=1)
        w_prime = soft_pi * w
        w_prime = w_prime.sum(dim=1)

        _, _, pred_clip_latent, _, _ = model(x=w_prime, x_type='gan_latent', times_augment_pred_image=50)
        
        l = loss(target_clip_latent, pred_clip_latent)
        l.backward()
        torch.nn.utils.clip_grad_norm_((w,), 1.)
        torch.nn.utils.clip_grad_norm_((pi,), 1.)
        optimizer_w.step()
        optimizer_pi.step()
        optimizer_w.zero_grad()
        optimizer_pi.zero_grad()

    # generate final image
    with torch.no_grad():
        soft_pi = F.softmax(pi, dim=1)
        w_prime = soft_pi * w
        w_prime = w_prime.sum(dim=1)

        _, _, _, _, pred_image_raw = model(x=w_prime, x_type='gan_latent')
    
    pred_image = ((pred_image_raw[0]+1.)/2.).cpu()
    return T.ToPILImage()(pred_image)


def face_to_face_interpolate(image1, image2, interp_lambda=0.5):
    if image1 is None or image2 is None:
        raise gr.Error("You need to provide two images as input.")

    image1_pt = transforms_image(image1).to(device)
    image2_pt = transforms_image(image2).to(device)

    # initialize optimization from the translator's output
    with torch.no_grad():
        images_pt = torch.stack([image1_pt, image2_pt])
        target_clip_latents = model.clip.encode_image(images_pt).detach().float()
        target_clip_latent = _slerp(interp_lambda, target_clip_latents[0].unsqueeze(0), target_clip_latents[1].unsqueeze(0))
        _, _, w = model(x=target_clip_latent, x_type='clip_latent', return_after_translator=True)

    w.requires_grad = True

    optimizer_w = SGLD((w,), lr=1e-1, momentum=0.99, noise_std=0.01, device=device)

    # optimization
    for _ in range(100):
        _, _, pred_clip_latent, _, _ = model(x=w, x_type='gan_latent', times_augment_pred_image=50)
        
        l = loss(target_clip_latent, pred_clip_latent)
        l.backward()
        torch.nn.utils.clip_grad_norm_((w,), 1.)
        optimizer_w.step()
        optimizer_w.zero_grad()

    # generate final image
    with torch.no_grad():
        _, _, _, _, pred_image_raw = model(x=w, x_type='gan_latent')
    
    pred_image = ((pred_image_raw[0]+1.)/2.).cpu()
    return T.ToPILImage()(pred_image)


examples_text = [
    "Muhammad Ali",
    "Tinker Bell",
    "A man with glasses, long black hair with sideburns and a goatee",
    "A child with blue eyes and straight brown hair in the sunshine",
    "A hairdresser",
    "A young boy with glasses and an angry face",
    "Denzel Washington",
    "A portrait of Angela Merkel",
    "President Emmanuel Macron",
    "President Xi Jinping"
]

examples_image = [
    ["./examples/example_1_1.jpg", "./examples/example_1_2.jpg"],
    ["./examples/example_2_1.jpg", "./examples/example_2_2.jpg"],
    ["./examples/example_3_1.jpg", "./examples/example_3_2.jpg"],
    ["./examples/example_4_1.jpg", "./examples/example_4_2.jpg"],
]


with gr.Blocks(css=css) as demo:
    gr.Markdown("<h1><center>TR0N Face Generation Demo</center></h1>")
    gr.Markdown("<h3><center><a href='https://layer6.ai/'>by Layer 6 AI</a></center></h3>")
    gr.Markdown("""<p align='middle'>
        <a href='https://arxiv.org/abs/2304.13742'><img src='https://img.shields.io/badge/arXiv-2304.13742-b31b1b.svg' /></a>
        <a href='https://github.com/layer6ai-labs/tr0n'><img src='https://badgen.net/badge/icon/github?icon=github&label' /></a>
    </p>""")
    gr.Markdown("We introduce TR0N, a simple and efficient method to add any type of conditioning to pre-trained generative models. For this demo, we add two types of conditioning to a StyleGAN2 model pre-trained on images of human faces. First, we add text-conditioning to turn StyleGAN2 into a text-to-face model. Second, we add image semantic conditioning to StyleGAN2 to enable face-to-face interpolation. For more details and results on many other generative models, please refer to our paper linked above.")
    
    with gr.Tab("Text-to-face generation") as text_to_face_generation_demo:
        text_to_face_generation_input = gr.Textbox(label="Enter your prompt", placeholder="e.g. A man with a beard and glasses", max_lines=1)
        text_to_face_generation_button = gr.Button("Generate")
        text_to_face_generation_output = gr.Image(label="Generated image", elem_id="image-gen")
        text_to_face_generation_examples = gr.Examples(examples=examples_text, fn=text_to_face_generate, inputs=text_to_face_generation_input, outputs=text_to_face_generation_output)

    with gr.Tab("Face-to-face interpolation") as face_to_face_interpolation_demo:
        gr.Markdown("We note that interpolations are not expected to recover the given images, even when the coefficient is 0 or 1.")
        with gr.Row():
            face_to_face_interpolation_input1 = gr.Image(label="Image 1", type="pil")
            face_to_face_interpolation_input2 = gr.Image(label="Image 2", type="pil")
        face_to_face_interpolation_lambda = gr.Slider(label="Interpolation coefficient", minimum=0, maximum=1, value=0.5, step=0.01)
        face_to_face_interpolation_button = gr.Button("Interpolate")
        face_to_face_interpolation_output = gr.Image(label="Interpolated image", elem_id="image-gen")
        face_to_face_interpolation_examples = gr.Examples(examples=examples_image, fn=face_to_face_interpolate, inputs=[face_to_face_interpolation_input1, face_to_face_interpolation_input2, face_to_face_interpolation_lambda], outputs=face_to_face_interpolation_output)

    text_to_face_generation_demo.select(fn=model_mode_text_select) 
    text_to_face_generation_input.submit(fn=text_to_face_generate, inputs=text_to_face_generation_input, outputs=text_to_face_generation_output)
    text_to_face_generation_button.click(fn=text_to_face_generate, inputs=text_to_face_generation_input, outputs=text_to_face_generation_output)

    face_to_face_interpolation_demo.select(fn=model_mode_image_select)
    face_to_face_interpolation_button.click(fn=face_to_face_interpolate, inputs=[face_to_face_interpolation_input1, face_to_face_interpolation_input2, face_to_face_interpolation_lambda], outputs=face_to_face_interpolation_output)


demo.queue()
demo.launch()