Adding initial files
Browse files- app.py +82 -0
- models/sgd_90.pkl +3 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa, joblib, numpy as np, gradio as gr
|
2 |
+
from scipy.interpolate import interp1d
|
3 |
+
from pyAudioAnalysis import ShortTermFeatures
|
4 |
+
from pydub.silence import detect_nonsilent
|
5 |
+
from pydub import AudioSegment
|
6 |
+
|
7 |
+
|
8 |
+
def smart_resize(arr, target_size):
|
9 |
+
current_size = arr.shape[1]
|
10 |
+
|
11 |
+
current_idx = np.linspace(0, current_size - 1, current_size)
|
12 |
+
target_idx = np.linspace(0, current_size - 1, target_size)
|
13 |
+
|
14 |
+
# Interpolate/extrapolate
|
15 |
+
interp_func = interp1d(current_idx, arr.squeeze(), kind='linear', fill_value="extrapolate")
|
16 |
+
resized_arr = interp_func(target_idx)
|
17 |
+
|
18 |
+
return resized_arr.reshape(1, target_size)
|
19 |
+
|
20 |
+
def remove_silence(wav_file):
|
21 |
+
audSeg = AudioSegment.from_wav(wav_file)
|
22 |
+
non_silence_ranges = detect_nonsilent(audSeg, min_silence_len=5, silence_thresh=-30)
|
23 |
+
|
24 |
+
if not non_silence_ranges:
|
25 |
+
sound = audSeg
|
26 |
+
else:
|
27 |
+
start = non_silence_ranges[0][0]
|
28 |
+
end = non_silence_ranges[-1][1]
|
29 |
+
trimmed_sound = audSeg[start:end]
|
30 |
+
sound = trimmed_sound
|
31 |
+
|
32 |
+
sound.export('audio.wav', format="wav")
|
33 |
+
|
34 |
+
def transform_data(audio):
|
35 |
+
remove_silence(audio)
|
36 |
+
x, sr = librosa.load('audio.wav')
|
37 |
+
|
38 |
+
result, f_names = ShortTermFeatures.feature_extraction(x, sr, 0.050*sr, 0.025*sr)
|
39 |
+
|
40 |
+
resize_features = smart_resize(result.reshape(1,-1), 20)
|
41 |
+
|
42 |
+
return resize_features
|
43 |
+
|
44 |
+
def predict(newdf, loaded_model):
|
45 |
+
|
46 |
+
prediction = loaded_model.predict(newdf)
|
47 |
+
|
48 |
+
return prediction
|
49 |
+
|
50 |
+
def get_label(newpred):
|
51 |
+
if newpred == 0:
|
52 |
+
return 'No'
|
53 |
+
else:
|
54 |
+
return 'Si'
|
55 |
+
|
56 |
+
def load_model():
|
57 |
+
ram_for = joblib.load('models/sgd_90.pkl')
|
58 |
+
|
59 |
+
return ram_for
|
60 |
+
|
61 |
+
def main(audio):
|
62 |
+
newdf = transform_data(audio)
|
63 |
+
loaded_model = load_model()
|
64 |
+
newpred = predict(newdf, loaded_model)
|
65 |
+
final = get_label(newpred)
|
66 |
+
|
67 |
+
return final
|
68 |
+
|
69 |
+
demo = gr.Interface(
|
70 |
+
title = "Autoagent | YES or NO Classification - Layer7",
|
71 |
+
description = "<h3>This model is useful to classify if the user says 'Si' or 'No'. 🎙️ </h3> <br> <b>Record your voice:</b>",
|
72 |
+
allow_flagging = "never",
|
73 |
+
fn = main,
|
74 |
+
inputs = gr.Audio(
|
75 |
+
sources=["microphone"],
|
76 |
+
type="filepath",
|
77 |
+
),
|
78 |
+
outputs = gr.Textbox(label="Clasification")
|
79 |
+
)
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
demo.launch(show_api=False)
|
models/sgd_90.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03f33949524bce752dae123a0fcbaac91be1e390bcaa338f141835463c795a78
|
3 |
+
size 1248
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
joblib
|
3 |
+
numpy
|
4 |
+
librosa
|
5 |
+
scipy
|
6 |
+
pyAudioAnalysis
|
7 |
+
pydub
|