#deepneurones = pipeline("text2text-generation", model="google/flan-t5-small") #deepneurones = pipeline("automatic-speech-recognition")# la liste des pipelines de huggingface est disponible ici :https://huggingface.co/docs/transformers/quicktour. pipeline() telecharge dans un cache local le modele deeplearning from transformers import pipeline # le framework de huggingface deepneurones= pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") # il faut choisir un modele #from pyannote.audio import Pipeline #,use_auth_token="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") #deepneuronesdiarizatin = Pipeline.from_pretrained("pyannote/speaker-diarization",use_auth_token="test") class AudioAnalyserAnglais: @classmethod def stt(cls, file_content): return deepneurones(file_content)