File size: 8,987 Bytes
f121890
5d45184
f121890
e6e9684
f121890
1366f26
5d45184
 
e6e9684
 
f121890
68c303a
20d40ec
e6e9684
20d40ec
 
ddb4a97
20d40ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e9684
20d40ec
 
f121890
2dd66b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d45184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f121890
 
 
 
 
 
e6e9684
 
ddb4a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e9684
 
 
 
ddb4a97
1366f26
2dd66b7
1366f26
 
ddb4a97
1366f26
2dd66b7
1366f26
 
e6e9684
 
 
1366f26
e6e9684
 
 
 
 
ddb4a97
f121890
e6e9684
 
ddb4a97
2dd66b7
 
 
 
 
 
 
 
ddb4a97
 
 
 
 
 
 
 
 
 
2dd66b7
 
 
 
 
ddb4a97
2dd66b7
 
ddb4a97
 
 
e6e9684
 
ddb4a97
e6e9684
ddb4a97
1366f26
 
 
 
 
 
 
 
f121890
2dd66b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddb4a97
2dd66b7
 
 
 
 
 
 
 
f121890
 
 
2dd66b7
a91474f
2dd66b7
a91474f
 
 
 
 
2dd66b7
 
 
 
 
f121890
 
 
 
e6e9684
 
 
 
ddb4a97
2dd66b7
f121890
ddb4a97
 
e6e9684
2dd66b7
 
 
20d40ec
e6e9684
 
 
 
 
 
f121890
 
20d40ec
f121890
 
 
2dd66b7
 
 
 
 
f121890
 
 
e6e9684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f121890
 
 
 
 
 
 
e6e9684
3dde8a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import re

import crystal_toolkit.components as ctc
import dash
import dash_mp_components as dmp
import numpy as np
import periodictable
from crystal_toolkit.settings import SETTINGS
from dash import dcc, html
from dash.dependencies import Input, Output, State
from datasets import load_dataset
from pymatgen.core import Structure
from pymatgen.ext.matproj import MPRester

HF_TOKEN = os.environ.get("HF_TOKEN")
top_k = 500

# Load only the train split of the dataset
dataset = load_dataset(
    "LeMaterial/leDataset",
    token=HF_TOKEN,
    split="train",
    columns=[
        "lattice_vectors",
        "species_at_sites",
        "cartesian_site_positions",
        "energy",
        "energy_corrected",
        "immutable_id",
        "elements",
        "functional",
        "stress_tensor",
        "magnetic_moments",
        "forces",
        "band_gap_direct",
        "band_gap_indirect",
        "dos_ef",
        "charges",
        "functional",
        "chemical_formula_reduced",
        "chemical_formula_descriptive",
        "total_magnetization",
    ],
)

display_columns = [
    "chemical_formula_descriptive",
    "functional",
    "immutable_id",
    "energy",
]
display_names = {
    "chemical_formula_descriptive": "Formula",
    "functional": "Functional",
    "immutable_id": "Material ID",
    "energy": "Energy (eV)",
}

mapping_table_idx_dataset_idx = {}

map_periodic_table = {v.symbol: k for k, v in enumerate(periodictable.elements)}

dataset_index = np.zeros((len(dataset), 118))
train_df = dataset.to_pandas()

pattern = re.compile(r"(?P<element>[A-Z][a-z]?)(?P<count>\d*)")
extracted = train_df["chemical_formula_descriptive"].str.extractall(pattern)
extracted["count"] = extracted["count"].replace("", "1").astype(int)

wide_df = extracted.reset_index().pivot_table(  # Move index to columns for pivoting
    index="level_0",  # original row index
    columns="element",
    values="count",
    aggfunc="sum",
    fill_value=0,
)

all_elements = [el.symbol for el in periodictable.elements]  # full element list
wide_df = wide_df.reindex(columns=all_elements, fill_value=0)

dataset_index = wide_df.values

dataset_index = dataset_index / np.sum(dataset_index, axis=1)[:, None]
dataset_index = (
    dataset_index / np.linalg.norm(dataset_index, axis=1)[:, None]
)  # Normalize vectors


# Initialize the Dash app
app = dash.Dash(__name__, assets_folder=SETTINGS.ASSETS_PATH)
server = app.server  # Expose the server for deployment

# Define the app layout
layout = html.Div(
    [
        html.H1(
            html.B("Interactive Crystal Viewer"),
            style={"textAlign": "center", "margin-top": "20px"},
        ),
        html.Div(
            [
                html.Div(
                    id="structure-container",
                    style={
                        "width": "48%",
                        "display": "inline-block",
                        "verticalAlign": "top",
                    },
                ),
                html.Div(
                    id="properties-container",
                    style={
                        "width": "48%",
                        "display": "inline-block",
                        "paddingLeft": "4%",
                        "verticalAlign": "top",
                    },
                ),
            ],
            style={"margin-top": "20px"},
        ),
        html.Div(
            [
                html.Div(
                    [
                        html.H3("Search Materials (eg. 'Ac,Cd,Ge' or 'Ac2CdGe3')"),
                        dmp.MaterialsInput(
                            allowedInputTypes=["elements", "formula"],
                            hidePeriodicTable=False,
                            periodicTableMode="toggle",
                            hideWildcardButton=True,
                            showSubmitButton=True,
                            submitButtonText="Search",
                            type="elements",
                            id="materials-input",
                        ),
                    ],
                    style={
                        "width": "100%",
                        "display": "inline-block",
                        "verticalAlign": "top",
                    },
                ),
            ],
            style={"margin-top": "20px", "margin-bottom": "20px"},
        ),
        html.Div(
            [
                html.Label("Select Material to Display"),
                # dcc.Dropdown(
                #     id="material-dropdown",
                #     options=[],  # Empty options initially
                #     value=None,
                # ),
                dash.dash_table.DataTable(
                    id="table",
                    columns=[
                        (
                            {"name": display_names[col], "id": col}
                            if col != "energy"
                            else {
                                "name": display_names[col],
                                "id": col,
                                "type": "numeric",
                                "format": {"specifier": ".2f"},
                            }
                        )
                        for col in display_columns
                    ],
                    data=[{}],
                    style_table={
                        "overflowX": "auto",
                        "height": "220px",
                        "overflowY": "auto",
                    },
                    style_header={"fontWeight": "bold", "backgroundColor": "lightgrey"},
                    style_cell={"textAlign": "center"},
                    style_as_list_view=True,
                ),
            ],
            style={"margin-top": "30px"},
        ),
        # html.Button("Display Material", id="display-button", n_clicks=0),
    ],
    style={
        "margin-left": "10px",
        "margin-right": "10px",
    },
)


def search_materials(query):
    query_vector = np.zeros(118)

    if "," in query:
        element_list = [el.strip() for el in query.split(",")]
        for el in element_list:
            query_vector[map_periodic_table[el]] = 1
    else:
        # Formula
        import re

        matches = re.findall(r"([A-Z][a-z]{0,2})(\d*)", query)
        for el, numb in matches:
            numb = int(numb) if numb else 1
            query_vector[map_periodic_table[el]] = numb

    similarity = np.dot(dataset_index, query_vector) / (np.linalg.norm(query_vector))
    indices = np.argsort(similarity)[::-1][:top_k]

    options = [dataset[int(i)] for i in indices]

    mapping_table_idx_dataset_idx.clear()
    for i, idx in enumerate(indices):
        mapping_table_idx_dataset_idx[int(i)] = int(idx)

    return options


# Callback to update the table based on search
@app.callback(
    Output("table", "data"),
    Input("materials-input", "submitButtonClicks"),
    Input("materials-input", "value"),
)
def on_submit_materials_input(n_clicks, query):
    if n_clicks is None or not query:
        return []

    entries = search_materials(query)

    return [{col: entry[col] for col in display_columns} for entry in entries]


# Callback to display the selected material
@app.callback(
    [
        Output("structure-container", "children"),
        Output("properties-container", "children"),
    ],
    # Input("display-button", "n_clicks"),
    Input("table", "active_cell"),
)
def display_material(active_cell):
    if not active_cell:
        return "", ""

    idx_active = active_cell["row"]
    row = dataset[mapping_table_idx_dataset_idx[idx_active]]

    structure = Structure(
        [x for y in row["lattice_vectors"] for x in y],
        row["species_at_sites"],
        row["cartesian_site_positions"],
        coords_are_cartesian=True,
    )

    # Create the StructureMoleculeComponent
    structure_component = ctc.StructureMoleculeComponent(structure)

    # Extract key properties
    properties = {
        "Material ID": row["immutable_id"],
        "Formula": row["chemical_formula_descriptive"],
        "Energy per atom (eV/atom)": row["energy"] / len(row["species_at_sites"]),
        "Band Gap (eV)": row["band_gap_direct"] or row["band_gap_indirect"],
        "Total Magnetization (μB/f.u.)": row["total_magnetization"],
    }

    # Format properties as an HTML table
    properties_html = html.Table(
        [
            html.Tbody(
                [
                    html.Tr([html.Th(key), html.Td(str(value))])
                    for key, value in properties.items()
                ]
            )
        ],
        style={
            "border": "1px solid black",
            "width": "100%",
            "borderCollapse": "collapse",
        },
    )

    return structure_component.layout(), properties_html


# Register crystal toolkit with the app
ctc.register_crystal_toolkit(app, layout)

if __name__ == "__main__":
    app.run_server(debug=True, port=7860, host="0.0.0.0")