Spaces:
Running
Running
File size: 8,241 Bytes
901176a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import os
import re
import crystal_toolkit.components as ctc
import numpy as np
import periodictable
from dash import dcc, html
from datasets import concatenate_datasets, load_dataset
from pymatgen.analysis.structure_analyzer import SpacegroupAnalyzer
HF_TOKEN = os.environ.get("HF_TOKEN")
top_k = 500
def get_dataset():
# Load only the train split of the dataset
datasets = []
subsets = [
"compatible_pbe",
"compatible_pbesol",
"compatible_scan",
"non_compatible",
]
for subset in subsets:
dataset = load_dataset(
"LeMaterial/leMat-Bulk",
subset,
token=HF_TOKEN,
columns=[
"lattice_vectors",
"species_at_sites",
"cartesian_site_positions",
"energy",
# "energy_corrected", # not yet available in LeMat-Bulk
"immutable_id",
"elements",
"functional",
"stress_tensor",
"magnetic_moments",
"forces",
# "band_gap_direct", #future release
# "band_gap_indirect", #future release
"dos_ef",
# "charges", #future release
"functional",
"chemical_formula_reduced",
"chemical_formula_descriptive",
"total_magnetization",
"entalpic_fingerprint",
],
)
datasets.append(dataset["train"])
return concatenate_datasets(datasets)
display_columns = [
"chemical_formula_descriptive",
"functional",
"immutable_id",
"energy",
]
display_names = {
"chemical_formula_descriptive": "Formula",
"functional": "Functional",
"immutable_id": "Material ID",
"energy": "Energy (eV)",
}
# Global shared variables
mapping_table_idx_dataset_idx = {}
def build_formula_index(dataset, index_range=None, cache_path=None, empty_data=False):
if empty_data:
return np.zeros((1, 1)), {}
use_dataset = dataset
if index_range is not None:
use_dataset = dataset.select(index_range)
# Preprocessing step to create an index for the dataset
if cache_path is not None:
train_df = pickle.load(open(f"{cache_path}/train_df.pkl", "rb"))
dataset_index = pickle.load(open(f"{cache_path}/dataset_index.pkl", "rb"))
else:
train_df = use_dataset.select_columns(
["chemical_formula_descriptive", "immutable_id"]
).to_pandas()
pattern = re.compile(r"(?P<element>[A-Z][a-z]?)(?P<count>\d*)")
extracted = train_df["chemical_formula_descriptive"].str.extractall(pattern)
extracted["count"] = extracted["count"].replace("", "1").astype(int)
wide_df = (
extracted.reset_index().pivot_table( # Move index to columns for pivoting
index="level_0", # original row index
columns="element",
values="count",
aggfunc="sum",
fill_value=0,
)
)
all_elements = [el.symbol for el in periodictable.elements] # full element list
wide_df = wide_df.reindex(columns=all_elements, fill_value=0)
dataset_index = wide_df.values
dataset_index = dataset_index / np.sum(dataset_index, axis=1)[:, None]
dataset_index = (
dataset_index / np.linalg.norm(dataset_index, axis=1)[:, None]
) # Normalize vectors
immutable_id_to_idx = train_df["immutable_id"].to_dict()
immutable_id_to_idx = {v: k for k, v in immutable_id_to_idx.items()}
return dataset_index, immutable_id_to_idx
import pickle
from pathlib import Path
# TODO: Just load the index from a file
def build_embeddings_index(empty_data=False):
if empty_data:
return None, {}, {}
features_dict = pickle.load(open("features_dict.pkl", "rb"))
from indexer import FAISSIndex
index = FAISSIndex()
for key in features_dict:
index.index.add(features_dict[key].reshape(1, -1))
idx_to_immutable_id = {i: key for i, key in enumerate(features_dict)}
# index = FAISSIndex.from_store("index.faiss")
return index, features_dict, idx_to_immutable_id
def search_materials(
query, dataset, dataset_index, mapping_table_idx_dataset_idx, map_periodic_table
):
n_elements = len(map_periodic_table)
query_vector = np.zeros(n_elements)
if "," in query:
element_list = [el.strip() for el in query.split(",")]
for el in element_list:
query_vector[map_periodic_table[el]] = 1
else:
# Formula
import re
matches = re.findall(r"([A-Z][a-z]{0,2})(\d*)", query)
for el, numb in matches:
numb = int(numb) if numb else 1
query_vector[map_periodic_table[el]] = numb
similarity = np.dot(dataset_index, query_vector) / (np.linalg.norm(query_vector))
indices = np.argsort(similarity)[::-1][:top_k]
options = [dataset[int(i)] for i in indices]
mapping_table_idx_dataset_idx.clear()
for i, idx in enumerate(indices):
mapping_table_idx_dataset_idx[int(i)] = int(idx)
return options
def get_properties_table(
row, structure, sga, properties_container_update, container_type="query"
):
properties = {
"Material ID": row["immutable_id"],
"Formula": row["chemical_formula_descriptive"],
"Energy per atom (eV/atom)": round(
row["energy"] / len(row["species_at_sites"]), 3
),
# "Band Gap (eV)": row["band_gap_direct"] or row["band_gap_indirect"], #future release
"Total Magnetization (μB)": (
round(row["total_magnetization"], 3)
if row["total_magnetization"] is not None
else None
),
"Density (g/cm^3)": round(structure.density, 3),
"Fermi energy level (eV)": (
round(row["dos_ef"], 3) if row["dos_ef"] is not None else None
),
"Crystal system": sga.get_crystal_system(),
"International Spacegroup": sga.get_symmetry_dataset().international,
"Magnetic moments (μB)": np.round(row["magnetic_moments"], 3),
"Stress tensor (kB)": np.round(row["stress_tensor"], 3),
"Forces on atoms (eV/A)": np.round(row["forces"], 3),
# "Bader charges (e-)": np.round(row["charges"], 3), # future release
"DFT Functional": row["functional"],
"Entalpic fingerprint": row["entalpic_fingerprint"],
}
style = {
"padding": "10px",
"borderBottom": "1px solid #ddd",
}
if container_type == "query":
properties_container_update[0] = properties
else:
properties_container_update[1] = properties
# if (type(value) in [str, float]) and (
# properties_container_update[0][key] == properties_container_update[1][key]
# ):
# style["backgroundColor"] = "#e6f7ff"
# Format properties as an HTML table
properties_html = html.Table(
[
html.Tbody(
[
html.Tr(
[
html.Th(
key,
style={
"padding": "10px",
"verticalAlign": "middle",
},
),
html.Td(
str(value),
style=style,
),
],
)
for key, value in properties.items()
],
)
],
style={
"width": "100%",
"borderCollapse": "collapse",
"fontFamily": "'Arial', sans-serif",
"fontSize": "14px",
"color": "#333333",
},
)
return properties_html
def get_crystal_plot(structure):
sga = SpacegroupAnalyzer(structure)
# Create the StructureMoleculeComponent
structure_component = ctc.StructureMoleculeComponent(structure)
return structure_component.layout(), sga
|