File size: 8,241 Bytes
901176a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import re

import crystal_toolkit.components as ctc
import numpy as np
import periodictable
from dash import dcc, html
from datasets import concatenate_datasets, load_dataset
from pymatgen.analysis.structure_analyzer import SpacegroupAnalyzer

HF_TOKEN = os.environ.get("HF_TOKEN")
top_k = 500


def get_dataset():
    # Load only the train split of the dataset
    datasets = []
    subsets = [
        "compatible_pbe",
        "compatible_pbesol",
        "compatible_scan",
        "non_compatible",
    ]

    for subset in subsets:
        dataset = load_dataset(
            "LeMaterial/leMat-Bulk",
            subset,
            token=HF_TOKEN,
            columns=[
                "lattice_vectors",
                "species_at_sites",
                "cartesian_site_positions",
                "energy",
                # "energy_corrected", # not yet available in LeMat-Bulk
                "immutable_id",
                "elements",
                "functional",
                "stress_tensor",
                "magnetic_moments",
                "forces",
                # "band_gap_direct", #future release
                # "band_gap_indirect", #future release
                "dos_ef",
                # "charges", #future release
                "functional",
                "chemical_formula_reduced",
                "chemical_formula_descriptive",
                "total_magnetization",
                "entalpic_fingerprint",
            ],
        )
        datasets.append(dataset["train"])

    return concatenate_datasets(datasets)


display_columns = [
    "chemical_formula_descriptive",
    "functional",
    "immutable_id",
    "energy",
]
display_names = {
    "chemical_formula_descriptive": "Formula",
    "functional": "Functional",
    "immutable_id": "Material ID",
    "energy": "Energy (eV)",
}

# Global shared variables
mapping_table_idx_dataset_idx = {}


def build_formula_index(dataset, index_range=None, cache_path=None, empty_data=False):
    if empty_data:
        return np.zeros((1, 1)), {}

    use_dataset = dataset
    if index_range is not None:
        use_dataset = dataset.select(index_range)

    # Preprocessing step to create an index for the dataset
    if cache_path is not None:
        train_df = pickle.load(open(f"{cache_path}/train_df.pkl", "rb"))

        dataset_index = pickle.load(open(f"{cache_path}/dataset_index.pkl", "rb"))
    else:
        train_df = use_dataset.select_columns(
            ["chemical_formula_descriptive", "immutable_id"]
        ).to_pandas()

        pattern = re.compile(r"(?P<element>[A-Z][a-z]?)(?P<count>\d*)")
        extracted = train_df["chemical_formula_descriptive"].str.extractall(pattern)
        extracted["count"] = extracted["count"].replace("", "1").astype(int)

        wide_df = (
            extracted.reset_index().pivot_table(  # Move index to columns for pivoting
                index="level_0",  # original row index
                columns="element",
                values="count",
                aggfunc="sum",
                fill_value=0,
            )
        )

        all_elements = [el.symbol for el in periodictable.elements]  # full element list
        wide_df = wide_df.reindex(columns=all_elements, fill_value=0)

        dataset_index = wide_df.values

        dataset_index = dataset_index / np.sum(dataset_index, axis=1)[:, None]
        dataset_index = (
            dataset_index / np.linalg.norm(dataset_index, axis=1)[:, None]
        )  # Normalize vectors

    immutable_id_to_idx = train_df["immutable_id"].to_dict()
    immutable_id_to_idx = {v: k for k, v in immutable_id_to_idx.items()}

    return dataset_index, immutable_id_to_idx


import pickle
from pathlib import Path


# TODO: Just load the index from a file
def build_embeddings_index(empty_data=False):
    if empty_data:
        return None, {}, {}

    features_dict = pickle.load(open("features_dict.pkl", "rb"))

    from indexer import FAISSIndex

    index = FAISSIndex()
    for key in features_dict:
        index.index.add(features_dict[key].reshape(1, -1))

    idx_to_immutable_id = {i: key for i, key in enumerate(features_dict)}

    # index = FAISSIndex.from_store("index.faiss")

    return index, features_dict, idx_to_immutable_id


def search_materials(
    query, dataset, dataset_index, mapping_table_idx_dataset_idx, map_periodic_table
):
    n_elements = len(map_periodic_table)
    query_vector = np.zeros(n_elements)

    if "," in query:
        element_list = [el.strip() for el in query.split(",")]
        for el in element_list:
            query_vector[map_periodic_table[el]] = 1
    else:
        # Formula
        import re

        matches = re.findall(r"([A-Z][a-z]{0,2})(\d*)", query)
        for el, numb in matches:
            numb = int(numb) if numb else 1
            query_vector[map_periodic_table[el]] = numb

    similarity = np.dot(dataset_index, query_vector) / (np.linalg.norm(query_vector))
    indices = np.argsort(similarity)[::-1][:top_k]

    options = [dataset[int(i)] for i in indices]

    mapping_table_idx_dataset_idx.clear()
    for i, idx in enumerate(indices):
        mapping_table_idx_dataset_idx[int(i)] = int(idx)

    return options


def get_properties_table(
    row, structure, sga, properties_container_update, container_type="query"
):
    properties = {
        "Material ID": row["immutable_id"],
        "Formula": row["chemical_formula_descriptive"],
        "Energy per atom (eV/atom)": round(
            row["energy"] / len(row["species_at_sites"]), 3
        ),
        # "Band Gap (eV)": row["band_gap_direct"] or row["band_gap_indirect"], #future release
        "Total Magnetization (μB)": (
            round(row["total_magnetization"], 3)
            if row["total_magnetization"] is not None
            else None
        ),
        "Density (g/cm^3)": round(structure.density, 3),
        "Fermi energy level (eV)": (
            round(row["dos_ef"], 3) if row["dos_ef"] is not None else None
        ),
        "Crystal system": sga.get_crystal_system(),
        "International Spacegroup": sga.get_symmetry_dataset().international,
        "Magnetic moments (μB)": np.round(row["magnetic_moments"], 3),
        "Stress tensor (kB)": np.round(row["stress_tensor"], 3),
        "Forces on atoms (eV/A)": np.round(row["forces"], 3),
        # "Bader charges (e-)": np.round(row["charges"], 3), # future release
        "DFT Functional": row["functional"],
        "Entalpic fingerprint": row["entalpic_fingerprint"],
    }

    style = {
        "padding": "10px",
        "borderBottom": "1px solid #ddd",
    }

    if container_type == "query":
        properties_container_update[0] = properties
    else:
        properties_container_update[1] = properties
        # if (type(value) in [str, float]) and (
        #     properties_container_update[0][key] == properties_container_update[1][key]
        # ):
        #     style["backgroundColor"] = "#e6f7ff"

    # Format properties as an HTML table
    properties_html = html.Table(
        [
            html.Tbody(
                [
                    html.Tr(
                        [
                            html.Th(
                                key,
                                style={
                                    "padding": "10px",
                                    "verticalAlign": "middle",
                                },
                            ),
                            html.Td(
                                str(value),
                                style=style,
                            ),
                        ],
                    )
                    for key, value in properties.items()
                ],
            )
        ],
        style={
            "width": "100%",
            "borderCollapse": "collapse",
            "fontFamily": "'Arial', sans-serif",
            "fontSize": "14px",
            "color": "#333333",
        },
    )

    return properties_html


def get_crystal_plot(structure):
    sga = SpacegroupAnalyzer(structure)
    # Create the StructureMoleculeComponent
    structure_component = ctc.StructureMoleculeComponent(structure)
    return structure_component.layout(), sga