materials_explorer / create_index.py
Ramlaoui's picture
Vectorized preprocessing
e690d34
raw
history blame
1.77 kB
import os
import re
import numpy as np
import periodictable
from datasets import load_dataset
HF_TOKEN = os.environ.get("HF_TOKEN")
# Load only the train split of the dataset
dataset = load_dataset(
"LeMaterial/leDataset",
token=HF_TOKEN,
split="train",
columns=[
"lattice_vectors",
"species_at_sites",
"cartesian_site_positions",
"energy",
"energy_corrected",
"immutable_id",
"elements",
"functional",
"stress_tensor",
"magnetic_moments",
"forces",
"band_gap_direct",
"band_gap_indirect",
"dos_ef",
"charges",
"functional",
"chemical_formula_reduced",
"chemical_formula_descriptive",
"total_magnetization",
],
)
map_periodic_table = {v.symbol: k for k, v in enumerate(periodictable.elements)}
dataset_index = np.zeros((len(dataset), 118))
train_df = dataset.to_pandas()
pattern = re.compile(r"(?P<element>[A-Z][a-z]?)(?P<count>\d*)")
extracted = train_df["chemical_formula_descriptive"].str.extractall(pattern)
extracted["count"] = extracted["count"].replace("", "1").astype(int)
wide_df = extracted.reset_index().pivot_table( # Move index to columns for pivoting
index="level_0", # original row index
columns="element",
values="count",
aggfunc="sum",
fill_value=0,
)
all_elements = [el.symbol for el in periodictable.elements] # full element list
wide_df = wide_df.reindex(columns=all_elements, fill_value=0)
dataset_index = wide_df.values
dataset_index = dataset_index / np.sum(dataset_index, axis=1)[:, None]
dataset_index = (
dataset_index / np.linalg.norm(dataset_index, axis=1)[:, None]
) # Normalize vectors
np.save("dataset_index.npy", dataset_index)