LeeRuben commited on
Commit
39fcc55
2 Parent(s): 2494160 bc5c55c

Merge remote-tracking branch 'origin/main'

Browse files
Files changed (1) hide show
  1. app.py +11 -94
app.py CHANGED
@@ -1,97 +1,14 @@
1
  import gradio as gr
2
 
3
- from matplotlib import gridspec
4
- import matplotlib.pyplot as plt
5
- import numpy as np
6
- from PIL import Image
7
- import tensorflow as tf
8
- from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
-
10
- feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
- "mattmdjaga/segformer_b2_clothes"
12
- )
13
- model = TFSegformerForSemanticSegmentation.from_pretrained(
14
- "mattmdjaga/segformer_b2_clothes"
15
  )
16
-
17
- def ade_palette():
18
- """ADE20K palette that maps each class to RGB values."""
19
- return [
20
- [255, 0, 0],
21
- [255, 255, 0],
22
- [0, 0, 255],
23
- [54, 54, 54],
24
- [4, 0, 74],
25
- ]
26
-
27
- labels_list = []
28
-
29
- with open(r'labels.txt', 'r') as fp:
30
- for line in fp:
31
- labels_list.append(line[:-1])
32
-
33
- colormap = np.asarray(ade_palette())
34
-
35
- def label_to_color_image(label):
36
- if label.ndim != 2:
37
- raise ValueError("Expect 2-D input label")
38
-
39
- if np.max(label) >= len(colormap):
40
- raise ValueError("label value too large.")
41
- return colormap[label]
42
-
43
- def draw_plot(pred_img, seg):
44
- fig = plt.figure(figsize=(20, 15))
45
-
46
- grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
47
-
48
- plt.subplot(grid_spec[0])
49
- plt.imshow(pred_img)
50
- plt.axis('off')
51
- LABEL_NAMES = np.asarray(labels_list)
52
- FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
53
- FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
54
-
55
- unique_labels = np.unique(seg.numpy().astype("uint8"))
56
- ax = plt.subplot(grid_spec[1])
57
- plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
58
- ax.yaxis.tick_right()
59
- plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
60
- plt.xticks([], [])
61
- ax.tick_params(width=0.0, labelsize=25)
62
- return fig
63
-
64
- def sepia(input_img):
65
- input_img = Image.fromarray(input_img)
66
-
67
- inputs = feature_extractor(images=input_img, return_tensors="tf")
68
- outputs = model(**inputs)
69
- logits = outputs.logits
70
-
71
- logits = tf.transpose(logits, [0, 2, 3, 1])
72
- logits = tf.image.resize(
73
- logits, input_img.size[::-1]
74
- ) # We reverse the shape of `image` because `image.size` returns width and height.
75
- seg = tf.math.argmax(logits, axis=-1)[0]
76
-
77
- color_seg = np.zeros(
78
- (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
79
- ) # height, width, 3
80
- for label, color in enumerate(colormap):
81
- color_seg[seg.numpy() == label, :] = color
82
-
83
- # Show image + mask
84
- pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
85
- pred_img = pred_img.astype(np.uint8)
86
-
87
- fig = draw_plot(pred_img, seg)
88
- return fig
89
-
90
- demo = gr.Interface(fn=sepia,
91
- inputs=gr.Image(shape=(400, 600)),
92
- outputs=['plot'],
93
- examples=["person-1.jpg", "person-2.jpg", "person-3.jpg", "person-4.jpg", "person-5.jpg"],
94
- allow_flagging='never')
95
-
96
-
97
- demo.launch()
 
1
  import gradio as gr
2
 
3
+ def greet(name, is_morning, temperature):
4
+ salutation = "Good morning" if is_morning else "Good evening"
5
+ greeting = f"{salutation} {name}. It is {temperature} degrees today"
6
+ celsius = (temperature - 32) * 5 / 9
7
+ return greeting, round(celsius, 2)
8
+
9
+ demo = gr.Interface(
10
+ fn=greet,
11
+ inputs=["text", "checkbox", gr.Slider(0, 100)],
12
+ outputs=["text", "number"],
 
 
13
  )
14
+ demo.launch()