LeeRuben commited on
Commit
6643809
1 Parent(s): 39fcc55

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -11
app.py CHANGED
@@ -1,14 +1,97 @@
1
  import gradio as gr
2
 
3
- def greet(name, is_morning, temperature):
4
- salutation = "Good morning" if is_morning else "Good evening"
5
- greeting = f"{salutation} {name}. It is {temperature} degrees today"
6
- celsius = (temperature - 32) * 5 / 9
7
- return greeting, round(celsius, 2)
8
-
9
- demo = gr.Interface(
10
- fn=greet,
11
- inputs=["text", "checkbox", gr.Slider(0, 100)],
12
- outputs=["text", "number"],
 
 
13
  )
14
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ from PIL import Image
7
+ import tensorflow as tf
8
+ from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
+
10
+ feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
+ "nvidia/segformer-b5-finetuned-ade-640-640"
12
+ )
13
+ model = TFSegformerForSemanticSegmentation.from_pretrained(
14
+ "nvidia/segformer-b5-finetuned-ade-640-640"
15
  )
16
+
17
+ def ade_palette():
18
+ """ADE20K palette that maps each class to RGB values."""
19
+ return [
20
+ [255, 0, 0],
21
+ [255, 255, 0],
22
+ [255, 255, 255],
23
+ [0, 255, 0],
24
+ [0, 0, 255],
25
+ ]
26
+
27
+ labels_list = []
28
+
29
+ with open(r'labels.txt', 'r') as fp:
30
+ for line in fp:
31
+ labels_list.append(line[:-1])
32
+
33
+ colormap = np.asarray(ade_palette())
34
+
35
+ def label_to_color_image(label):
36
+ if label.ndim != 2:
37
+ raise ValueError("Expect 2-D input label")
38
+
39
+ if np.max(label) >= len(colormap):
40
+ raise ValueError("label value too large.")
41
+ return colormap[label]
42
+
43
+ def draw_plot(pred_img, seg):
44
+ fig = plt.figure(figsize=(20, 15))
45
+
46
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
47
+
48
+ plt.subplot(grid_spec[0])
49
+ plt.imshow(pred_img)
50
+ plt.axis('off')
51
+ LABEL_NAMES = np.asarray(labels_list)
52
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
53
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
54
+
55
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
56
+ ax = plt.subplot(grid_spec[1])
57
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
58
+ ax.yaxis.tick_right()
59
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
60
+ plt.xticks([], [])
61
+ ax.tick_params(width=0.0, labelsize=25)
62
+ return fig
63
+
64
+ def sepia(input_img):
65
+ input_img = Image.fromarray(input_img)
66
+
67
+ inputs = feature_extractor(images=input_img, return_tensors="tf")
68
+ outputs = model(**inputs)
69
+ logits = outputs.logits
70
+
71
+ logits = tf.transpose(logits, [0, 2, 3, 1])
72
+ logits = tf.image.resize(
73
+ logits, input_img.size[::-1]
74
+ ) # We reverse the shape of `image` because `image.size` returns width and height.
75
+ seg = tf.math.argmax(logits, axis=-1)[0]
76
+
77
+ color_seg = np.zeros(
78
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
79
+ ) # height, width, 3
80
+ for label, color in enumerate(colormap):
81
+ color_seg[seg.numpy() == label, :] = color
82
+
83
+ # Show image + mask
84
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
85
+ pred_img = pred_img.astype(np.uint8)
86
+
87
+ fig = draw_plot(pred_img, seg)
88
+ return fig
89
+
90
+ demo = gr.Interface(fn=sepia,
91
+ inputs=gr.Image(shape=(400, 600)),
92
+ outputs=['plot'],
93
+ examples=["person-1.jpg", "person-2.jpg", "person-3.jpg", "person-4.jpg", "person-5.jpg"],
94
+ allow_flagging='never')
95
+
96
+
97
+ demo.launch()