import requests import pandas as pd import gradio as gr from transformers import MarianMTModel, MarianTokenizer import io import pysrt # Fetch and parse language options url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md" response = requests.get(url) df = pd.read_csv(io.StringIO(response.text), delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all') df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name'] df['ISO 639-1'] = df['ISO 639-1'].str.strip() # Prepare language options for the dropdown language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']} - {row['Language Name'].strip()}") for index, row in df.iterrows()] def translate_text(text, source_language_code, target_language_code): # Construct model name using ISO 639-1 codes model_name = f"Helsinki-NLP/opus-mt-{source_language_code}-{target_language_code}" # Check if source and target languages are the same if source_language_code == target_language_code: return "Translation between the same languages is not supported." # Load tokenizer and model try: tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) except Exception as e: return f"Failed to load model for {source_language_code} to {target_language_code}: {str(e)}" # Translate text translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)) translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) return translated_text def translate_srt(file_info, source_language_code, target_language_code): # Assuming file_info is a dictionary with 'content' holding the file's bytes file_content = file_info['content'] # Correctly access the bytes content of the file # Use pysrt to load subtitles from the file content subs = pysrt.open(io.BytesIO(file_content)) # Translate each subtitle for sub in subs: translated_text = translate_text(sub.text, source_language_code, target_language_code) sub.text = translated_text # Save the translated subtitles to a temporary file output_path = "/mnt/data/translated_srt.srt" with open(output_path, "w", encoding="utf-8") as file: subs.save(file, encoding='utf-8') return output_path source_language_dropdown = gr.Dropdown(choices=language_options, label="Source Language") target_language_dropdown = gr.Dropdown(choices=language_options, label="Target Language") iface = gr.Interface( fn=translate_srt, inputs=[ gr.File(label="Upload SRT File"), source_language_dropdown, target_language_dropdown ], outputs=gr.File(label="Download Translated SRT File"), title="SRT Translator", description="Translate SubRip Text (SRT) subtitle files. This tool uses models from the Language Technology Research Group at the University of Helsinki." ) iface.launch()