Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import requests | |
from transformers import MarianMTModel, MarianTokenizer | |
import io | |
def fetch_languages(url): | |
response = requests.get(url) | |
if response.status_code == 200: | |
# Convert bytes to a string using decode, then create a file-like object with io.StringIO | |
csv_content = response.content.decode('utf-8') | |
df = pd.read_csv(io.StringIO(csv_content), delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all') | |
df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name'] | |
df['ISO 639-1'] = df['ISO 639-1'].str.strip() | |
language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']} - {row['Language Name']}") for index, row in df.iterrows()] | |
return language_options | |
else: | |
return [] | |
# Make sure to replace the URL with the correct one if it has changed | |
url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md" | |
language_options = fetch_languages(url) | |
# Streamlit UI components | |
st.title("π Translator") | |
st.write("We use model from [Language Technology Research Group at the University of Helsinki](https://huggingface.co/Helsinki-NLP). For API use please visit [this space](https://huggingface.co/spaces/Lenylvt/Translator-API). π΄ All Language are not Available") | |
source_language = st.selectbox("1οΈβ£ Select Source Language", options=language_options, format_func=lambda x: x[1]) | |
target_language = st.selectbox("2οΈβ£ Select Target Language", options=language_options, format_func=lambda x: x[1]) | |
text = st.text_area("βοΈ Enter text to translate...", height=150) | |
def translate_text(text, source_language_code, target_language_code): | |
model_name = f"Helsinki-NLP/opus-mt-{source_language_code}-{target_language_code}" | |
if source_language_code == target_language_code: | |
return "π΄ Translation between the same languages is not supported." | |
try: | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
model = MarianMTModel.from_pretrained(model_name) | |
translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)) | |
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) | |
return translated_text | |
except Exception as e: | |
return f"Failed to load model for {source_language_code} to {target_language_code}: {str(e)}" | |
if st.button("π Translate"): | |
source_language_code, _ = source_language | |
target_language_code, _ = target_language | |
translation = translate_text(text, source_language_code, target_language_code) | |
st.text_area("β¬οΈ Translated Text", value=translation, height=150, key="translation_output") | |