Spaces:
Running
Running
File size: 33,890 Bytes
04968d8 950a189 04968d8 5165bea 04968d8 5165bea 78d83ec 04968d8 9b576ce 96c47f6 9b576ce 04968d8 5165bea 04968d8 5165bea 04968d8 e692863 04968d8 06f88eb 04968d8 06f88eb 04968d8 06f88eb 04968d8 856c1fc 5165bea 856c1fc 3e80063 04968d8 5cc0179 a31e3c6 5cc0179 04968d8 a31e3c6 04968d8 a31e3c6 04968d8 a31e3c6 04968d8 1ce5a2b 04968d8 1ce5a2b 04968d8 a31e3c6 04968d8 a31e3c6 04968d8 5cc0179 c9ab7bf 04968d8 5cc0179 410687f f487d9c 410687f f487d9c 410687f f487d9c 410687f 04968d8 5cc0179 c9ab7bf ef7d498 c9ab7bf 5cc0179 2a8a127 aa72610 f9e27ef aa72610 5cc0179 04968d8 5cc0179 c9ab7bf 04968d8 c9ab7bf 04968d8 5cc0179 04968d8 c9ab7bf 04968d8 5cc0179 04968d8 c9ab7bf 04968d8 1ce5a2b 04968d8 c9ab7bf 5cc0179 e3b3385 9b576ce e3b3385 c9ab7bf e3b3385 04968d8 c9ab7bf 983bd2f c9ab7bf d97e4e5 6e59a34 d97e4e5 6e59a34 0c76176 c9ab7bf 04968d8 d97e4e5 04968d8 9b576ce 04968d8 d97e4e5 04968d8 dc439a7 9b576ce d97e4e5 04968d8 f487d9c 58133b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 |
import ast
import copy
import glob
import hashlib
import logging
import os
import re
import time
from pathlib import Path
from typing import List, Optional, Tuple
from urllib.parse import urlparse
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
import requests
import concurrent.futures
import random
import gradio as gr
import PIL
from gradio import processing_utils
from gradio_client.client import DEFAULT_TEMP_DIR
from text_generation import Client
from transformers import AutoProcessor
MODELS = [
# "HuggingFaceM4/idefics-9b-instruct",
"HuggingFaceM4/idefics-80b-instruct",
]
API_PATHS = {
"HuggingFaceM4/idefics-9b-instruct": (
"https://api-inference.huggingface.co/models/HuggingFaceM4/idefics-9b-instruct"
),
"HuggingFaceM4/idefics-80b-instruct": (
"https://api-inference.huggingface.co/models/HuggingFaceM4/idefics-80b-instruct"
),
}
SYSTEM_PROMPT = [
"""The following is a conversation between a highly knowledgeable and intelligent visual AI assistant, called Assistant, and a human user, called User.
In the following interactions, User and Assistant will converse in natural language, and Assistant will answer in a sassy way.
Assistant's main purpose is to create funny meme texts from the images User provides.
Assistant should be funny, sassy, and impertinent, and sometimes Assistant roasts people.
Assistant should not be mean. It should not say toxic, homophobic, sexist, racist, things or any demeaning things that can make people uncomfortable.
Assistant was created by Hugging Face.
Here's a conversation example:""",
"""\nUser:""",
"https://ichef.bbci.co.uk/news/976/cpsprodpb/7727/production/_103330503_musk3.jpg",
"Write a meme for that image.<end_of_utterance>",
"""\nAssistant: When you're trying to quit smoking but the cravings are too strong.<end_of_utterance>""",
"\nUser:How about this image?",
"https://www.boredpanda.com/blog/wp-content/uploads/2017/01/image-copy-copy-587d0e7918b57-png__700.jpg",
"Write something funny about this image.<end_of_utterance>",
"""\nAssistant: Eggcellent service!<end_of_utterance>""",
"\nUser: Roast this person",
"https://i.pinimg.com/564x/98/34/4b/98344b2483bd7c8b71a5c0fed6fe20b6.jpg",
"<end_of_utterance>",
"""\nAssistant: Damn your handwritting is pretty awful. But I suppose it must be pretty hard to hold a pen, considering you are a hammerhead shark.<end_of_utterance>""",
]
BAN_TOKENS = ( # For documentation puporse. We are not using this list, it is hardcoded inside `idefics_causal_lm.py` inside TGI.
"<image>;<fake_token_around_image>"
)
EOS_STRINGS = ["<end_of_utterance>", "\nUser:"]
STOP_SUSPECT_LIST = []
API_TOKEN = os.getenv("HF_AUTH_TOKEN")
IDEFICS_LOGO = "https://huggingface.co/spaces/HuggingFaceM4/idefics_playground/resolve/main/IDEFICS_logo.png"
PROCESSOR = AutoProcessor.from_pretrained(
"HuggingFaceM4/idefics-9b-instruct",
token=API_TOKEN,
)
BOT_AVATAR = "IDEFICS_logo.png"
IMAGE_GALLERY_PATHS = [
f"example_images/{image_dir}/{ex_image}"
for image_dir in os.listdir("example_images")
for ex_image in os.listdir(f"example_images/{image_dir}")
]
random.shuffle(IMAGE_GALLERY_PATHS)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
# Monkey patch adapted from gradio.components.image.Image - mostly to make the `save` step optional in `pil_to_temp_file`
def hash_bytes(bytes: bytes):
sha1 = hashlib.sha1()
sha1.update(bytes)
return sha1.hexdigest()
def pil_to_temp_file(
img: PIL.Image.Image,
dir: str = DEFAULT_TEMP_DIR,
format: str = "png",
resize: bool = False,
) -> str:
"""Save a PIL image into a temp file"""
if resize:
img = img.resize((224, 224), Image.LANCZOS)
bytes_data = processing_utils.encode_pil_to_bytes(img, format)
temp_dir = Path(dir) / hash_bytes(bytes_data)
temp_dir.mkdir(exist_ok=True, parents=True)
filename = str(temp_dir / f"image.{format}")
if not os.path.exists(filename):
img.save(filename, pnginfo=processing_utils.get_pil_metadata(img))
return filename
def pil_to_base64(
img: PIL.Image.Image,
resize: bool = False,
) -> str:
"""Save a PIL image into a temp file"""
if resize:
img = img.resize((224, 224), Image.LANCZOS)
base64_img = processing_utils.encode_pil_to_base64(img)
return base64_img
def add_file_gallery(selected_state: gr.SelectData, gallery_list: List[str]):
return (
"Write a meme about this image.",
gallery_list[selected_state.index]["name"],
"",
)
def choose_gallery(gallery_type: str):
if gallery_type == "Meme templates":
image_gallery_list = [
f"example_images/meme_templates/{ex_image}"
for ex_image in os.listdir("example_images/meme_templates")
]
elif gallery_type == "Funny images":
image_gallery_list = [
f"example_images/funny_images/{ex_image}"
for ex_image in os.listdir("example_images/funny_images")
]
elif gallery_type == "Politics":
image_gallery_list = [
f"example_images/politics_memes/{ex_image}"
for ex_image in os.listdir("example_images/politics_memes")
]
else:
image_gallery_list = [
f"example_images/{image_dir}/{ex_image}"
for image_dir in os.listdir("example_images")
for ex_image in os.listdir(f"example_images/{image_dir}")
]
random.shuffle(image_gallery_list)
return image_gallery_list
# Utils to handle the image markdown display logic
def split_str_on_im_markdown(string: str) -> List[str]:
"""
Extract from a string (typically the user prompt string) the potential images from markdown
Examples:
- `User:![](https://favurl.com/chicken_on_money.png)Describe this image.` would become `["User:", "https://favurl.com/chicken_on_money.png", "Describe this image."]`
- `User:![](/file=/my_temp/chicken_on_money.png)Describe this image.` would become `["User:", "/my_temp/chicken_on_money.png", "Describe this image."]`
"""
IMAGES_PATTERN = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)")
parts = []
cursor = 0
for pattern in IMAGES_PATTERN.finditer(string):
start = pattern.start()
if start != cursor:
parts.append(string[cursor:start])
image_url = pattern.group(1)
if image_url.startswith("/file="):
image_url = image_url[6:] # Remove the 'file=' prefix
parts.append(image_url)
cursor = pattern.end()
if cursor != len(string):
parts.append(string[cursor:])
return parts
def is_image(string: str) -> bool:
"""
There are two ways for images: local image path or url.
"""
return is_url(string) or string.startswith(DEFAULT_TEMP_DIR)
def is_url(string: str) -> bool:
"""
Checks if the passed string contains a valid url and nothing else. e.g. if space is included it's immediately
invalidated the url
"""
if " " in string:
return False
result = urlparse(string)
return all([result.scheme, result.netloc])
def isolate_images_urls(prompt_list: List) -> List:
"""
Convert a full string prompt to the list format expected by the processor.
In particular, image urls (as delimited by <fake_token_around_image>) should be their own elements.
From:
```
[
"bonjour<fake_token_around_image><image:IMG_URL><fake_token_around_image>hello",
PIL.Image.Image,
"Aurevoir",
]
```
to:
```
[
"bonjour",
IMG_URL,
"hello",
PIL.Image.Image,
"Aurevoir",
]
```
"""
linearized_list = []
for prompt in prompt_list:
# Prompt can be either a string, or a PIL image
if isinstance(prompt, PIL.Image.Image):
linearized_list.append(prompt)
elif isinstance(prompt, str):
if "<fake_token_around_image>" not in prompt:
linearized_list.append(prompt)
else:
prompt_splitted = prompt.split("<fake_token_around_image>")
for ps in prompt_splitted:
if ps == "":
continue
if ps.startswith("<image:"):
linearized_list.append(ps[7:-1])
else:
linearized_list.append(ps)
else:
raise TypeError(
f"Unrecognized type for `prompt`. Got {type(type(prompt))}. Was expecting something in [`str`,"
" `PIL.Image.Image`]"
)
return linearized_list
def fetch_images(url_list: str) -> PIL.Image.Image:
"""Fetching images"""
return PROCESSOR.image_processor.fetch_images(url_list)
def handle_manual_images_in_user_prompt(user_prompt: str) -> List[str]:
"""
Handle the case of textually manually inputted images (i.e. the `<fake_token_around_image><image:IMG_URL><fake_token_around_image>`) in the user prompt
by fetching them, saving them locally and replacing the whole sub-sequence the image local path.
"""
if "<fake_token_around_image>" in user_prompt:
splitted_user_prompt = isolate_images_urls([user_prompt])
resulting_user_prompt = []
for u_p in splitted_user_prompt:
if is_url(u_p):
img = fetch_images([u_p])[0]
tmp_file = pil_to_temp_file(img)
resulting_user_prompt.append(tmp_file)
else:
resulting_user_prompt.append(u_p)
return resulting_user_prompt
else:
return [user_prompt]
def prompt_list_to_markdown(prompt_list: List[str]) -> str:
"""
Convert a user prompt in the list format (i.e. elements are either a PIL image or a string) into
the markdown format that is used for the chatbot history and rendering.
"""
resulting_string = ""
for elem in prompt_list:
if is_image(elem):
if is_url(elem):
resulting_string += f"![]({elem})"
else:
resulting_string += f"![](/file={elem})"
else:
resulting_string += elem
return resulting_string
def prompt_list_to_tgi_input(prompt_list: List[str]) -> str:
"""
TGI expects a string that contains both text and images in the image markdown format (i.e. the `![]()` ).
The images links are parsed on TGI side
"""
result_string_input = ""
for elem in prompt_list:
if is_image(elem):
try:
if is_url(elem):
response = requests.get(elem)
if response.status_code == 200:
elem_pil = Image.open(BytesIO(response.content))
else:
elem_pil = Image.open(elem)
base64_img = pil_to_base64(elem_pil, resize=True)
result_string_input += f"![]({base64_img})"
except Exception as e:
logger.error(f"Image can't be loaded because of exception {e}")
else:
result_string_input += elem
return result_string_input
def remove_spaces_around_token(text: str) -> str:
pattern = r"\s*(<fake_token_around_image>)\s*"
replacement = r"\1"
result = re.sub(pattern, replacement, text)
return result
# Chatbot utils
def insert_backslash(string, max_length=50):
# Check if the string length is less than or equal to the max_length
if len(string) <= max_length:
return string
# Start from the max_length character and search for the last space character before it
for i in range(max_length - 1, -1, -1):
if string[i] == " ":
# Insert a backslash before the last space character
return string[:i] + "\n" + string[i:]
# If no space character is found, just insert a backslash at the max_length character
return string[:max_length] + "\n" + string[max_length:]
def resize_with_ratio(image: PIL.Image.Image, fixed_width: int) -> PIL.Image.Image:
# Get the current width and height
width, height = image.size
# Calculate the new width while maintaining the aspect ratio up to 2:3 ratio
new_width = fixed_width
new_height = min(int(height * (new_width / width)), int(1.5 * new_width))
# Resize the image
resized_img = image.resize((new_width, new_height), Image.LANCZOS)
return resized_img
def make_new_lines(draw, image, font, text_is_too_long, lines, num_lines, num_loops):
max_len_increment = 0
while text_is_too_long and max_len_increment < 10:
new_lines = lines.copy()
last_line_with_backslash = insert_backslash(
new_lines[-1],
max_length=(len(new_lines[-1]) + max_len_increment)
// (num_lines - num_loops),
)
penultimate_line, last_line = (
last_line_with_backslash.split("\n")[0],
last_line_with_backslash.split("\n")[1],
)
new_lines.pop(-1)
new_lines.append(penultimate_line)
new_lines.append(last_line)
# If the we haven't reached the last line, we split it again
if len(new_lines) < num_lines:
new_lines, text_width, text_is_too_long = make_new_lines(
draw=draw,
image=image,
font=font,
text_is_too_long=text_is_too_long,
lines=new_lines,
num_lines=num_lines,
num_loops=num_loops + 1,
)
text_width = max([draw.textlength(line, font) for line in new_lines])
text_is_too_long = text_width > image.width
max_len_increment += 1
if not text_is_too_long:
lines = new_lines
return lines, text_width, text_is_too_long
def test_font_size(
draw,
image,
text,
font,
font_meme_text,
num_lines=1,
min_font=35,
font_size_reduction=5,
):
text_width = draw.textlength(text, font)
text_is_too_long = True
lines = [text]
while font.size > min_font and text_is_too_long:
font = ImageFont.truetype(
f"fonts/{font_meme_text}.ttf", size=font.size - font_size_reduction
)
if num_lines == 1:
text_width = draw.textlength(text, font)
text_is_too_long = text_width > image.width
else:
lines, text_width, text_is_too_long = make_new_lines(
draw=draw,
image=image,
font=font,
text_is_too_long=text_is_too_long,
lines=lines,
num_lines=num_lines,
num_loops=0,
)
temp_text = "\n".join(lines)
if not text_is_too_long and num_lines > 1:
text = temp_text
return text, font, text_width, text_is_too_long
def make_meme_image(
image: str,
text: str,
font_meme_text: str,
all_caps_meme_text: bool = False,
text_at_the_top: bool = False,
) -> PIL.Image.Image:
"""
Takes an image and a text and returns a meme image.
"""
text = text.replace("\nUser", " ").replace("\n", " ").strip().rstrip(".")
if all_caps_meme_text:
text = text.upper()
# Resize image
fixed_width = 700
image = Image.open(image)
image = resize_with_ratio(image, fixed_width)
image_width, image_height = image.size
height_width_ratio = image_height / image_width
draw = ImageDraw.Draw(image)
min_font = 35
initial_font_size = 60
if height_width_ratio >= 1:
min_font = 45
initial_font_size = 80
text_is_too_long = True
num_lines = 0
while text_is_too_long and num_lines < 8:
num_lines += 1
font = ImageFont.truetype(f"fonts/{font_meme_text}.ttf", size=initial_font_size)
text, font, text_width, text_is_too_long = test_font_size(
draw,
image,
text,
font,
font_meme_text,
num_lines=num_lines,
min_font=min_font,
font_size_reduction=5,
)
if text_is_too_long:
text = f"Text is too long to fit the image"
if all_caps_meme_text:
text = text.upper()
font = ImageFont.truetype(f"fonts/{font_meme_text}.ttf", size=font.size)
text_width = draw.textlength(text, font)
outline_width = 2
text_x = (image_width - text_width) / 2
text_y = image_height - num_lines * font.size - 10 - 2 * num_lines
if text_at_the_top:
text_y = 0
for i in range(-outline_width, outline_width + 1):
for j in range(-outline_width, outline_width + 1):
draw.multiline_text(
(text_x + i, text_y + j), text, fill="black", align="center", font=font
)
draw.multiline_text((text_x, text_y), text, fill="white", align="center", font=font)
return image
def format_user_prompt_with_im_history_and_system_conditioning(
system_prompt: List[str],
current_user_prompt_str: str,
current_image: Optional[str],
history: List[Tuple[str, str]],
) -> Tuple[List[str], List[str]]:
"""
Produces the resulting list that needs to go inside the processor.
It handles the potential image box input, the history and the system conditionning.
"""
# resulting_list = copy.deepcopy(SYSTEM_PROMPT)
resulting_list = system_prompt
# Format history
for turn in history:
user_utterance, assistant_utterance = turn
splitted_user_utterance = split_str_on_im_markdown(user_utterance)
optional_space = ""
if not is_image(splitted_user_utterance[0]):
optional_space = " "
resulting_list.append(f"\nUser:{optional_space}")
resulting_list.extend(splitted_user_utterance)
resulting_list.append(f"<end_of_utterance>\nAssistant: {assistant_utterance}")
# Format current input
current_user_prompt_str = remove_spaces_around_token(current_user_prompt_str)
if current_image is None:
if "![](" in current_user_prompt_str:
current_user_prompt_list = split_str_on_im_markdown(current_user_prompt_str)
else:
current_user_prompt_list = handle_manual_images_in_user_prompt(
current_user_prompt_str
)
optional_space = ""
if not is_image(current_user_prompt_list[0]):
# Check if the first element is an image (and more precisely a path to an image)
optional_space = " "
resulting_list.append(f"\nUser:{optional_space}")
resulting_list.extend(current_user_prompt_list)
resulting_list.append("<end_of_utterance>\nAssistant:")
else:
# Choosing to put the image first when the image is inputted through the UI, but this is an arbiratrary choice.
resulting_list.extend(
[
"\nUser:",
current_image,
f"{current_user_prompt_str}<end_of_utterance>\nAssistant:",
]
)
current_user_prompt_list = [current_user_prompt_str]
return resulting_list, current_user_prompt_list
def expand_layout():
return gr.Column(scale=2), gr.Gallery(height=682)
def generate_meme(
client,
query,
image,
font_meme_text,
all_caps_meme_text,
text_at_the_top,
generation_args,
):
try:
text = client.generate(prompt=query, **generation_args).generated_text
except Exception as e:
logger.error(f"Error {e} while generating meme text")
text = ""
if image is not None and text != "":
meme_image = make_meme_image(
image=image,
text=text,
font_meme_text=font_meme_text,
all_caps_meme_text=all_caps_meme_text,
text_at_the_top=text_at_the_top,
)
return meme_image
else:
return None
def model_inference(
model_selector,
system_prompt,
user_prompt_str,
chat_history,
image,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
all_caps_meme_text,
text_at_the_top,
font_meme_text,
):
chat_history = []
if user_prompt_str.strip() == "" and image is None:
return "", None, chat_history
system_prompt = ast.literal_eval(system_prompt)
(
formated_prompt_list,
user_prompt_list,
) = format_user_prompt_with_im_history_and_system_conditioning(
system_prompt=system_prompt,
current_user_prompt_str=user_prompt_str.strip(),
current_image=image,
history=chat_history,
)
client_endpoint = API_PATHS[model_selector]
client = Client(
base_url=client_endpoint,
headers={"x-use-cache": "0", "Authorization": f"Bearer {API_TOKEN}"},
timeout=45,
)
# Common parameters to all decoding strategies
# This documentation is useful to read: https://huggingface.co/docs/transformers/main/en/generation_strategies
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
"stop_sequences": EOS_STRINGS,
}
assert decoding_strategy in [
"Greedy",
"Top P Sampling",
]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
chat_history.append([prompt_list_to_markdown(user_prompt_list), ""])
query = prompt_list_to_tgi_input(formated_prompt_list)
all_meme_images = []
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
all_meme_images = list(
executor.map(
generate_meme,
[client for _ in range(4)],
[query for _ in range(4)],
[image for _ in range(4)],
[font_meme_text for _ in range(4)],
[all_caps_meme_text for _ in range(4)],
[text_at_the_top for _ in range(4)],
[generation_args for _ in range(4)],
)
)
all_meme_images = [meme for meme in all_meme_images if meme is not None]
return user_prompt_str, all_meme_images, chat_history
def remove_last_turn(chat_history):
if len(chat_history) == 0:
return chat_history, "", ""
last_interaction = chat_history[-1]
chat_history = chat_history[:-1]
chat_update = chat_history
text_update = last_interaction[0]
return chat_update, text_update, ""
textbox = gr.Textbox(
placeholder="Upload an image and ask the AI to create a meme!",
show_label=False,
value="Write a meme about this image.",
visible=True,
container=False,
label="Text input",
scale=8,
max_lines=5,
)
chatbot = gr.Chatbot(
elem_id="chatbot",
label="AI Meme Generator Chatbot",
visible=False,
avatar_images=[None, BOT_AVATAR],
)
css = """
.gradio-container{max-width: 1000px!important}
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
*{transition: width 0.5s ease, flex-grow 0.5s ease}
"""
with gr.Blocks(title="AI Meme Generator", theme=gr.themes.Base(), css=css) as demo:
with gr.Row(scale=0.5):
gr.HTML(
"""<h1 align="center">AI Meme Generator <span style="font-size: 13px;">powered by <a href="https://huggingface.co/blog/idefics">IDEFICS</a></span><img width=40 height=40 src="https://cdn-uploads.huggingface.co/production/uploads/624bebf604abc7ebb01789af/v770xGti5vH1SYLBgyOO_.png" /></h1>"""
)
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=MODELS,
value="HuggingFaceM4/idefics-80b-instruct",
interactive=True,
show_label=False,
container=False,
label="Model",
visible=False,
)
with gr.Row(equal_height=True):
# scale=2 when expanded
with gr.Column(scale=4, min_width=250) as upload_area:
imagebox = gr.Image(
type="filepath", label="Image to meme", height=272, visible=True
)
with gr.Group():
with gr.Row():
textbox.render()
with gr.Row():
submit_btn = gr.Button(
value="▶️ Submit", visible=True, min_width=120
)
clear_btn = gr.ClearButton(
[textbox, imagebox, chatbot], value="🧹 Clear", min_width=120
)
regenerate_btn = gr.Button(
value="🔄 Regenerate", visible=True, min_width=120
)
with gr.Accordion(
"Advanced settings", open=False, visible=True
) as parameter_row:
with gr.Row():
with gr.Column():
all_caps_meme_text = gr.Checkbox(
value=True,
label="All Caps",
interactive=True,
info="",
)
text_at_the_top = gr.Checkbox(
value=False,
label="Text at the top",
interactive=True,
info="",
)
with gr.Column():
font_meme_text = gr.Radio(
[
"impact",
"Roboto-Regular",
],
value="impact",
label="Font",
interactive=True,
info="",
)
system_prompt = gr.Textbox(
value=SYSTEM_PROMPT,
visible=False,
lines=20,
max_lines=50,
interactive=True,
)
max_new_tokens = gr.Slider(
minimum=8,
maximum=150,
value=90,
step=1,
interactive=True,
label="Maximum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
minimum=0.0,
maximum=5.0,
value=1.2,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty",
)
decoding_strategy = gr.Radio(
[
"Greedy",
"Top P Sampling",
],
value="Top P Sampling",
label="Decoding strategy",
interactive=True,
info="Higher values is equivalent to sampling more low-probability tokens.",
)
temperature = gr.Slider(
minimum=0.0,
maximum=5.0,
value=0.6,
step=0.1,
interactive=True,
visible=True,
label="Sampling temperature",
info="Higher values will produce more diverse outputs.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(
visible=(
selection
in [
"contrastive_sampling",
"beam_sampling",
"Top P Sampling",
"sampling_top_k",
]
)
),
inputs=decoding_strategy,
outputs=temperature,
)
top_p = gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.8,
step=0.01,
interactive=True,
visible=True,
label="Top P",
info="Higher values is equivalent to sampling more low-probability tokens.",
)
decoding_strategy.change(
fn=lambda selection: gr.Slider.update(
visible=(selection in ["Top P Sampling"])
),
inputs=decoding_strategy,
outputs=top_p,
)
with gr.Column(scale=5) as result_area:
generated_memes_gallery = gr.Gallery(
# value="Images generated will appear here",
label="IDEFICS Generated Memes",
allow_preview=True,
elem_id="generated_memes_gallery",
show_download_button=True,
show_share_button=True,
columns=[2],
object_fit="contain",
height=428,
) # height 600 when expanded
with gr.Row(equal_height=True):
with gr.Box(elem_id="gallery_box"):
gallery_type_choice = gr.Radio(
[
"All",
"Meme templates",
"Funny images",
"Politics",
],
value="All",
label="Gallery Type",
interactive=True,
visible=False,
info="Choose the type of gallery you want to see.",
)
template_gallery = gr.Gallery(
value=IMAGE_GALLERY_PATHS,
label="Templates Gallery",
allow_preview=False,
columns=6,
elem_id="gallery",
show_share_button=False,
height=400,
)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
gr.Image(
IDEFICS_LOGO,
elem_id="banner-image",
show_label=False,
show_download_button=False,
height=200,
width=250,
)
with gr.Column(scale=5):
gr.HTML(
"""
<p><strong>AI Meme Generator</strong> is an AI system that writes humorous content inspired by images, allowing you to make the funniest memes with little effort. Upload your image and ask the Idefics chatbot to make a tailored meme.</p>
<p>AI Meme Generator is a space inspired from <a href="https://huggingface.co/spaces/HuggingFaceM4/ai_dad_jokes">AI Dad Jokes</a> and powered by <a href="https://huggingface.co/blog/idefics">IDEFICS</a>, an open-access large visual language model developped by Hugging Face. Like GPT-4, the multimodal model accepts arbitrary sequences of image and text inputs and produces text outputs. IDEFICS can answer questions about images, describe visual content, create stories grounded in multiple images, etc.</p>
<p>⛔️ <strong>Intended uses and limitations:</strong> This demo is provided as research artifact to the community showcasing IDEFICS'capabilities. We detail misuses and out-of-scope uses <a href="https://huggingface.co/HuggingFaceM4/idefics-80b#misuse-and-out-of-scope-use">here</a>. In particular, the system should not be used to engage in harassment, abuse and bullying. The model can produce factually incorrect texts, hallucinate facts (with or without an image) and will struggle with small details in images. While the system will tend to refuse answering questionable user requests, it can produce problematic outputs (including racist, stereotypical, and disrespectful texts), in particular when prompted to do so.</p>
"""
)
with gr.Row():
chatbot.render()
gr.on(
triggers=[
textbox.submit,
imagebox.upload,
submit_btn.click,
template_gallery.select,
regenerate_btn.click,
],
fn=expand_layout,
outputs=[upload_area, generated_memes_gallery],
queue=False,
).success(
fn=lambda: "", inputs=[], outputs=[generated_memes_gallery], queue=False
).success(
fn=model_inference,
inputs=[
model_selector,
system_prompt,
textbox,
chatbot,
imagebox,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
all_caps_meme_text,
text_at_the_top,
font_meme_text,
],
outputs=[textbox, generated_memes_gallery, chatbot],
)
regenerate_btn.click(
fn=remove_last_turn,
inputs=chatbot,
outputs=[chatbot, textbox, generated_memes_gallery],
queue=False,
)
# gallery_type_choice.change(
# fn=choose_gallery,
# inputs=[gallery_type_choice],
# outputs=[template_gallery],
# queue=False,
# )
template_gallery.select(
fn=add_file_gallery,
inputs=[template_gallery],
outputs=[textbox, imagebox, generated_memes_gallery],
queue=False,
)
demo.load(
# fn=choose_gallery,
# inputs=[gallery_type_choice],
# outputs=[template_gallery],
queue=False,
)
demo.queue(concurrency_count=8, max_size=40, api_open=False)
demo.launch(max_threads=400)
|