Syu ljsabc commited on
Commit
fffd326
0 Parent(s):

Duplicate from ljsabc/Fujisaki

Browse files

Co-authored-by: Miaomiao Li <ljsabc@users.noreply.huggingface.co>

Files changed (6) hide show
  1. .gitattributes +34 -0
  2. README.md +14 -0
  3. app.py +135 -0
  4. configuration_chatglm.py +92 -0
  5. modeling_chatglm.py +1264 -0
  6. requirements.txt +20 -0
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Fujisaki
3
+ emoji: 💻
4
+ colorFrom: green
5
+ colorTo: pink
6
+ sdk: gradio
7
+ sdk_version: 3.23.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ duplicated_from: ljsabc/Fujisaki
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Fujisaki_CPU.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1Damnr0Ha4zZAlKFvne9cu76uuElLNYus
8
+
9
+ 李萌萌的电子骨灰盒
10
+ ----
11
+
12
+ 这是一个通过ChatGLM模型训练的李萌萌的数字分身,你可以在问题栏目填入内容,或者什么都不填,来观察李萌萌到底会说些什么。
13
+ T4级别的GPU已经可以很胜任这个任务了。
14
+
15
+ ### 安装依赖
16
+ """
17
+
18
+ from modeling_chatglm import ChatGLMForConditionalGeneration
19
+ import torch
20
+ import sys
21
+
22
+ from transformers import AutoTokenizer, GenerationConfig
23
+
24
+ model = ChatGLMForConditionalGeneration.from_pretrained("THUDM/chatglm-6b").float()
25
+ tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
26
+
27
+ from peft import get_peft_model, LoraConfig, TaskType, PeftModel
28
+ peft_path = 'ljsabc/Fujisaki_GLM' # change it to your own
29
+ model = PeftModel.from_pretrained(
30
+ model,
31
+ peft_path,
32
+ torch_dtype=torch.float,
33
+ )
34
+
35
+ # dump a log to ensure everything works well
36
+ print(model.peft_config)
37
+ # We have to use full precision, as some tokens are >65535
38
+ model.eval()
39
+
40
+ torch.set_default_tensor_type(torch.FloatTensor)
41
+ def evaluate(context, temperature, top_p, top_k):
42
+ generation_config = GenerationConfig(
43
+ temperature=temperature,
44
+ top_p=top_p,
45
+ top_k=top_k,
46
+ #repetition_penalty=1.1,
47
+ num_beams=1,
48
+ do_sample=True,
49
+ )
50
+ with torch.no_grad():
51
+ input_text = f"Context: {context}Answer: "
52
+ ids = tokenizer.encode(input_text)
53
+ input_ids = torch.LongTensor([ids]).to('cpu')
54
+ out = model.generate(
55
+ input_ids=input_ids,
56
+ max_length=160,
57
+ generation_config=generation_config
58
+ )
59
+ out_text = tokenizer.decode(out[0]).split("Answer: ")[1]
60
+ return out_text
61
+
62
+ def evaluate_stream(msg, history, temperature, top_p):
63
+ generation_config = GenerationConfig(
64
+ temperature=temperature,
65
+ top_p=top_p,
66
+ #repetition_penalty=1.1,
67
+ num_beams=1,
68
+ do_sample=True,
69
+ )
70
+
71
+ history.append([msg, None])
72
+
73
+ context = ""
74
+ if len(history) > 4:
75
+ history.pop(0)
76
+
77
+ for j in range(len(history)):
78
+ history[j][0] = history[j][0].replace("<br>", "")
79
+
80
+ # concatenate context
81
+ for h in history[:-1]:
82
+ context += h[0] + "||" + h[1] + "||"
83
+
84
+ context += history[-1][0]
85
+ context = context.replace(r'<br>', '')
86
+
87
+ # TODO: Avoid the tokens are too long.
88
+ CUTOFF = 224
89
+ while len(tokenizer.encode(context)) > CUTOFF:
90
+ # save 15 token size for the answer
91
+ context = context[15:]
92
+
93
+ h = []
94
+ print("History:", history)
95
+ print("Context:", context)
96
+ for response, h in model.stream_chat(tokenizer, context, h, max_length=CUTOFF, top_p=top_p, temperature=temperature):
97
+ history[-1][1] = response
98
+ yield history, ""
99
+
100
+ #return response
101
+
102
+ import gradio as gr
103
+
104
+ title = """<h1 align="center">李萌萌(Alter Ego)</h1>
105
+ <h3 align='center'>这是一个通过ChatGLM模型训练的李萌萌的数字分身,你可以与她聊天,或者直接在文本框按下Enter,来观察李萌萌到底会说些什么。</h3>
106
+ <p align='center'>可能是因为数据的原因,相比于提问,陈述性的上下文更容易跑出更好的结果。</p>"""
107
+
108
+ footer = """<p align='center'>项目在<a href='https://github.com/ljsabc/Fujisaki' target='_blank'>GitHub</a>上托管,基于清华的<a href='https://huggingface.co/THUDM/chatglm-6b' target='_blank'>THUDM/chatglm-6b</a>项目。</p>
109
+ <p align='center'><em>"I'm... a boy." --Chihiro Fujisaki</em></p>"""
110
+
111
+ with gr.Blocks() as demo:
112
+ gr.HTML(title)
113
+ state = gr.State()
114
+ with gr.Row():
115
+ with gr.Column(scale=2):
116
+ temp = gr.components.Slider(minimum=0, maximum=1.1, value=0.8, label="Temperature",
117
+ info="温度参数,越高的温度生成的内容越丰富,但是有可能出现语法问题。小的温度也能帮助生成更相关的回答。")
118
+ top_p = gr.components.Slider(minimum=0.5, maximum=1.0, value=0.975, label="Top-p",
119
+ info="top-p参数,只输出前p>top-p的文字,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。")
120
+ #code = gr.Textbox(label="temp_output", info="解码器输出")
121
+ #top_k = gr.components.Slider(minimum=1, maximum=200, step=1, value=25, label="Top k",
122
+ # info="top-k参数,下一个输出的文字会从top-k个文字中进行选择,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。")
123
+
124
+ with gr.Column(scale=3):
125
+ chatbot = gr.Chatbot(label="聊天框", info="")
126
+ msg = gr.Textbox(label="输入框", placeholder="最近过得怎么样?",
127
+ info="输入你的内容,按[Enter]发送。也可以什么都不填写生成随机数据。对话一般不能太长,否则就复读机了,建议清除数据。")
128
+ clear = gr.Button("清除聊天")
129
+
130
+ msg.submit(evaluate_stream, [msg, chatbot, temp, top_p], [chatbot, msg])
131
+ clear.click(lambda: None, None, chatbot, queue=False)
132
+ gr.HTML(footer)
133
+
134
+ demo.queue()
135
+ demo.launch(debug=False)
configuration_chatglm.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ ChatGLM model configuration """
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.utils import logging
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+
9
+ class ChatGLMConfig(PretrainedConfig):
10
+ r"""
11
+ This is the configuration class to store the configuration of a [`~ChatGLMModel`].
12
+ It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
13
+ architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
14
+ the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
15
+
16
+ Configuration objects inherit from [`PretrainedConfig`] and can be used
17
+ to control the model outputs. Read the documentation from [`PretrainedConfig`]
18
+ for more information.
19
+
20
+
21
+ Args:
22
+ vocab_size (`int`, *optional*, defaults to 150528):
23
+ Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
24
+ `inputs_ids` passed when calling [`~ChatGLMModel`] or
25
+ [`~TFChatGLMModel`].
26
+ hidden_size (`int`, *optional*, defaults to 4096):
27
+ Dimension of the encoder layers and the pooler layer.
28
+ num_hidden_layers (`int`, *optional*, defaults to 28):
29
+ Number of hidden layers in the Transformer encoder.
30
+ num_attention_heads (`int`, *optional*, defaults to 32):
31
+ Number of attention heads for each attention layer in the Transformer encoder.
32
+ inner_hidden_size (`int`, *optional*, defaults to 16384):
33
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
34
+ max_sequence_length (`int`, *optional*, defaults to 512):
35
+ The maximum sequence length that this model might ever be used with.
36
+ Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
37
+ layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
38
+ The epsilon used by the layer normalization layers.
39
+ use_cache (`bool`, *optional*, defaults to `True`):
40
+ Whether the model should return the last key/values attentions (not used by all models).
41
+ Example:
42
+
43
+ ```python
44
+ >>> from configuration_chatglm import ChatGLMConfig
45
+ >>> from modeling_chatglm import ChatGLMModel
46
+
47
+ >>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
48
+ >>> configuration = ChatGLMConfig()
49
+
50
+ >>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
51
+ >>> model = ChatGLMModel(configuration)
52
+
53
+ >>> # Accessing the model configuration
54
+ >>> configuration = model.config
55
+ ```
56
+ """
57
+ model_type = "chatglm"
58
+
59
+ def __init__(
60
+ self,
61
+ vocab_size=150528,
62
+ hidden_size=4096,
63
+ num_layers=28,
64
+ num_attention_heads=32,
65
+ layernorm_epsilon=1e-5,
66
+ use_cache=False,
67
+ bos_token_id=150004,
68
+ eos_token_id=150005,
69
+ pad_token_id=0,
70
+ max_sequence_length=2048,
71
+ inner_hidden_size=16384,
72
+ position_encoding_2d=True,
73
+ **kwargs
74
+ ):
75
+ self.num_layers = num_layers
76
+ self.vocab_size = vocab_size
77
+ self.hidden_size = hidden_size
78
+ self.num_attention_heads = num_attention_heads
79
+ self.max_sequence_length = max_sequence_length
80
+ self.layernorm_epsilon = layernorm_epsilon
81
+ self.inner_hidden_size = inner_hidden_size
82
+ self.use_cache = use_cache
83
+ self.bos_token_id = bos_token_id
84
+ self.eos_token_id = eos_token_id
85
+ self.pad_token_id = pad_token_id
86
+ self.position_encoding_2d = position_encoding_2d
87
+ super().__init__(
88
+ pad_token_id=pad_token_id,
89
+ bos_token_id=bos_token_id,
90
+ eos_token_id=eos_token_id,
91
+ **kwargs
92
+ )
modeling_chatglm.py ADDED
@@ -0,0 +1,1264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import copy
5
+ import os
6
+ import warnings
7
+ import re
8
+ import sys
9
+
10
+ import torch
11
+ import torch.utils.checkpoint
12
+ import torch.nn.functional as F
13
+ from torch import nn
14
+ from torch.nn import CrossEntropyLoss, LayerNorm
15
+ from torch.nn.utils import skip_init
16
+ from typing import Optional, Tuple, Union, List, Callable
17
+
18
+ from transformers.utils import (
19
+ add_code_sample_docstrings,
20
+ add_start_docstrings,
21
+ add_start_docstrings_to_model_forward,
22
+ )
23
+ from transformers.modeling_outputs import (
24
+ BaseModelOutputWithPast,
25
+ CausalLMOutputWithPast,
26
+ BaseModelOutputWithPastAndCrossAttentions,
27
+ )
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.utils import logging
30
+ from transformers.generation.logits_process import LogitsProcessor
31
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
32
+
33
+ from configuration_chatglm import ChatGLMConfig
34
+
35
+ # flags required to enable jit fusion kernels
36
+
37
+ if sys.platform != 'darwin':
38
+ torch._C._jit_set_profiling_mode(False)
39
+ torch._C._jit_set_profiling_executor(False)
40
+ torch._C._jit_override_can_fuse_on_cpu(True)
41
+ torch._C._jit_override_can_fuse_on_gpu(True)
42
+
43
+ logger = logging.get_logger(__name__)
44
+
45
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
46
+ _CONFIG_FOR_DOC = "ChatGLM6BConfig"
47
+
48
+ CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
49
+ "THUDM/chatglm-6b",
50
+ # See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
51
+ ]
52
+
53
+
54
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
55
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
56
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
57
+ scores.zero_()
58
+ scores[..., 20005] = 5e4
59
+ return scores
60
+
61
+
62
+ def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
63
+ """Load tf checkpoints in a pytorch model."""
64
+ try:
65
+ import re
66
+
67
+ import numpy as np
68
+ import tensorflow as tf
69
+ except ImportError:
70
+ logger.error(
71
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
72
+ "https://www.tensorflow.org/install/ for installation instructions."
73
+ )
74
+ raise
75
+ tf_path = os.path.abspath(tf_checkpoint_path)
76
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
77
+ # Load weights from TF model
78
+ init_vars = tf.train.list_variables(tf_path)
79
+ names = []
80
+ arrays = []
81
+ for name, shape in init_vars:
82
+ logger.info(f"Loading TF weight {name} with shape {shape}")
83
+ array = tf.train.load_variable(tf_path, name)
84
+ names.append(name)
85
+ arrays.append(array)
86
+
87
+ for name, array in zip(names, arrays):
88
+ name = name.split("/")
89
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
90
+ # which are not required for using pretrained model
91
+ if any(
92
+ n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
93
+ for n in name
94
+ ):
95
+ logger.info(f"Skipping {'/'.join(name)}")
96
+ continue
97
+ pointer = model
98
+ for m_name in name:
99
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
100
+ scope_names = re.split(r"_(\d+)", m_name)
101
+ else:
102
+ scope_names = [m_name]
103
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
104
+ pointer = getattr(pointer, "weight")
105
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
106
+ pointer = getattr(pointer, "bias")
107
+ elif scope_names[0] == "output_weights":
108
+ pointer = getattr(pointer, "weight")
109
+ elif scope_names[0] == "squad":
110
+ pointer = getattr(pointer, "classifier")
111
+ else:
112
+ try:
113
+ pointer = getattr(pointer, scope_names[0])
114
+ except AttributeError:
115
+ logger.info(f"Skipping {'/'.join(name)}")
116
+ continue
117
+ if len(scope_names) >= 2:
118
+ num = int(scope_names[1])
119
+ pointer = pointer[num]
120
+ if m_name[-11:] == "_embeddings":
121
+ pointer = getattr(pointer, "weight")
122
+ elif m_name == "kernel":
123
+ array = np.transpose(array)
124
+ try:
125
+ assert (
126
+ pointer.shape == array.shape
127
+ ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
128
+ except AssertionError as e:
129
+ e.args += (pointer.shape, array.shape)
130
+ raise
131
+ logger.info(f"Initialize PyTorch weight {name}")
132
+ pointer.data = torch.from_numpy(array)
133
+ return model
134
+
135
+
136
+ @torch.jit.script
137
+ def gelu_impl(x):
138
+ """OpenAI's gelu implementation."""
139
+ return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
140
+ (1.0 + 0.044715 * x * x)))
141
+
142
+
143
+ def gelu(x):
144
+ return gelu_impl(x)
145
+
146
+
147
+ class RotaryEmbedding(torch.nn.Module):
148
+ def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
149
+ super().__init__()
150
+ inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
151
+ inv_freq = inv_freq.half()
152
+ self.learnable = learnable
153
+ if learnable:
154
+ self.inv_freq = torch.nn.Parameter(inv_freq)
155
+ self.max_seq_len_cached = None
156
+ else:
157
+ self.register_buffer('inv_freq', inv_freq)
158
+ self.max_seq_len_cached = None
159
+ self.cos_cached = None
160
+ self.sin_cached = None
161
+ self.precision = precision
162
+
163
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
164
+ error_msgs):
165
+ pass
166
+
167
+ def forward(self, x, seq_dim=1, seq_len=None):
168
+ if seq_len is None:
169
+ seq_len = x.shape[seq_dim]
170
+ if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
171
+ self.max_seq_len_cached = None if self.learnable else seq_len
172
+ t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
173
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
174
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
175
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
176
+ if self.precision == torch.bfloat16:
177
+ emb = emb.float()
178
+
179
+ # [sx, 1 (b * np), hn]
180
+ cos_cached = emb.cos()[:, None, :]
181
+ sin_cached = emb.sin()[:, None, :]
182
+ if self.precision == torch.bfloat16:
183
+ cos_cached = cos_cached.bfloat16()
184
+ sin_cached = sin_cached.bfloat16()
185
+ if self.learnable:
186
+ return cos_cached, sin_cached
187
+ self.cos_cached, self.sin_cached = cos_cached, sin_cached
188
+ return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
189
+
190
+
191
+ def rotate_half(x):
192
+ x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
193
+ return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
194
+
195
+
196
+ @torch.jit.script
197
+ def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
198
+ # position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
199
+ cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
200
+ F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
201
+ q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
202
+ return q, k
203
+
204
+
205
+ def attention_fn(
206
+ self,
207
+ query_layer,
208
+ key_layer,
209
+ value_layer,
210
+ attention_mask,
211
+ hidden_size_per_partition,
212
+ layer_id,
213
+ layer_past=None,
214
+ scaling_attention_score=True,
215
+ use_cache=False,
216
+ ):
217
+ if layer_past is not None:
218
+ past_key, past_value = layer_past
219
+ key_layer = torch.cat((past_key, key_layer), dim=0)
220
+ value_layer = torch.cat((past_value, value_layer), dim=0)
221
+
222
+ # seqlen, batch, num_attention_heads, hidden_size_per_attention_head
223
+ seq_len, b, nh, hidden_size = key_layer.shape
224
+
225
+ if use_cache:
226
+ present = (key_layer, value_layer)
227
+ else:
228
+ present = None
229
+
230
+ query_key_layer_scaling_coeff = float(layer_id + 1)
231
+ if scaling_attention_score:
232
+ query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
233
+
234
+ # ===================================
235
+ # Raw attention scores. [b, np, s, s]
236
+ # ===================================
237
+
238
+ # [b, np, sq, sk]
239
+ output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
240
+
241
+ # [sq, b, np, hn] -> [sq, b * np, hn]
242
+ query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
243
+ # [sk, b, np, hn] -> [sk, b * np, hn]
244
+ key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
245
+
246
+ matmul_result = torch.empty(
247
+ output_size[0] * output_size[1],
248
+ output_size[2],
249
+ output_size[3],
250
+ dtype=query_layer.dtype,
251
+ device=query_layer.device,
252
+ )
253
+
254
+ matmul_result = torch.baddbmm(
255
+ matmul_result,
256
+ query_layer.transpose(0, 1), # [b * np, sq, hn]
257
+ key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
258
+ beta=0.0,
259
+ alpha=1.0,
260
+ )
261
+
262
+ # change view to [b, np, sq, sk]
263
+ attention_scores = matmul_result.view(*output_size)
264
+
265
+ if self.scale_mask_softmax:
266
+ self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
267
+ attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
268
+ else:
269
+ if not (attention_mask == 0).all():
270
+ # if auto-regressive, skip
271
+ attention_scores.masked_fill_(attention_mask, -10000.0)
272
+ dtype = attention_scores.dtype
273
+ attention_scores = attention_scores.float()
274
+ attention_scores = attention_scores * query_key_layer_scaling_coeff
275
+
276
+ attention_probs = F.softmax(attention_scores, dim=-1)
277
+
278
+ attention_probs = attention_probs.type(dtype)
279
+
280
+ # =========================
281
+ # Context layer. [sq, b, hp]
282
+ # =========================
283
+
284
+ # value_layer -> context layer.
285
+ # [sk, b, np, hn] --> [b, np, sq, hn]
286
+
287
+ # context layer shape: [b, np, sq, hn]
288
+ output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
289
+
290
+ # change view [sk, b * np, hn]
291
+ value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
292
+
293
+ # change view [b * np, sq, sk]
294
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
295
+
296
+ # matmul: [b * np, sq, hn]
297
+ context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
298
+
299
+ # change view [b, np, sq, hn]
300
+ context_layer = context_layer.view(*output_size)
301
+
302
+ # [b, np, sq, hn] --> [sq, b, np, hn]
303
+ context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
304
+
305
+ # [sq, b, np, hn] --> [sq, b, hp]
306
+ new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
307
+ context_layer = context_layer.view(*new_context_layer_shape)
308
+
309
+ outputs = (context_layer, present, attention_probs)
310
+
311
+ return outputs
312
+
313
+
314
+ class SelfAttention(torch.nn.Module):
315
+ def __init__(self, hidden_size, num_attention_heads,
316
+ layer_id, hidden_size_per_attention_head=None, bias=True,
317
+ params_dtype=torch.float, position_encoding_2d=True):
318
+ super(SelfAttention, self).__init__()
319
+
320
+ self.layer_id = layer_id
321
+ self.hidden_size = hidden_size
322
+ self.hidden_size_per_partition = hidden_size
323
+ self.num_attention_heads = num_attention_heads
324
+ self.num_attention_heads_per_partition = num_attention_heads
325
+ self.position_encoding_2d = position_encoding_2d
326
+ self.rotary_emb = RotaryEmbedding(
327
+ self.hidden_size // (self.num_attention_heads * 2)
328
+ if position_encoding_2d
329
+ else self.hidden_size // self.num_attention_heads,
330
+ base=10000,
331
+ precision=torch.half,
332
+ learnable=False,
333
+ )
334
+
335
+ self.scale_mask_softmax = None
336
+
337
+ if hidden_size_per_attention_head is None:
338
+ self.hidden_size_per_attention_head = hidden_size // num_attention_heads
339
+ else:
340
+ self.hidden_size_per_attention_head = hidden_size_per_attention_head
341
+
342
+ self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
343
+
344
+ # Strided linear layer.
345
+ self.query_key_value = skip_init(
346
+ torch.nn.Linear,
347
+ hidden_size,
348
+ 3 * self.inner_hidden_size,
349
+ bias=bias,
350
+ dtype=params_dtype,
351
+ )
352
+
353
+ self.dense = skip_init(
354
+ torch.nn.Linear,
355
+ self.inner_hidden_size,
356
+ hidden_size,
357
+ bias=bias,
358
+ dtype=params_dtype,
359
+ )
360
+
361
+ @staticmethod
362
+ def attention_mask_func(attention_scores, attention_mask):
363
+ attention_scores.masked_fill_(attention_mask, -10000.0)
364
+ return attention_scores
365
+
366
+ def split_tensor_along_last_dim(self, tensor, num_partitions,
367
+ contiguous_split_chunks=False):
368
+ """Split a tensor along its last dimension.
369
+ Arguments:
370
+ tensor: input tensor.
371
+ num_partitions: number of partitions to split the tensor
372
+ contiguous_split_chunks: If True, make each chunk contiguous
373
+ in memory.
374
+ """
375
+ # Get the size and dimension.
376
+ last_dim = tensor.dim() - 1
377
+ last_dim_size = tensor.size()[last_dim] // num_partitions
378
+ # Split.
379
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
380
+ # Note: torch.split does not create contiguous tensors by default.
381
+ if contiguous_split_chunks:
382
+ return tuple(chunk.contiguous() for chunk in tensor_list)
383
+
384
+ return tensor_list
385
+
386
+ def forward(
387
+ self,
388
+ hidden_states: torch.Tensor,
389
+ position_ids,
390
+ attention_mask: torch.Tensor,
391
+ layer_id,
392
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
393
+ use_cache: bool = False,
394
+ output_attentions: bool = False,
395
+ ):
396
+ """
397
+ hidden_states: [seq_len, batch, hidden_size]
398
+ attention_mask: [(1, 1), seq_len, seq_len]
399
+ """
400
+
401
+ # [seq_len, batch, 3 * hidden_size]
402
+ mixed_raw_layer = self.query_key_value(hidden_states)
403
+
404
+ # [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
405
+ new_tensor_shape = mixed_raw_layer.size()[:-1] + (
406
+ self.num_attention_heads_per_partition,
407
+ 3 * self.hidden_size_per_attention_head,
408
+ )
409
+ mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
410
+
411
+ # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
412
+ (query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
413
+
414
+ if self.position_encoding_2d:
415
+ q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
416
+ k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
417
+ cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
418
+ position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
419
+ position_ids[:, 1, :].transpose(0, 1).contiguous()
420
+ q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
421
+ q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
422
+ query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
423
+ key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
424
+ else:
425
+ position_ids = position_ids.transpose(0, 1)
426
+ cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
427
+ # [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
428
+ query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)
429
+
430
+ # [seq_len, batch, hidden_size]
431
+ context_layer, present, attention_probs = attention_fn(
432
+ self=self,
433
+ query_layer=query_layer,
434
+ key_layer=key_layer,
435
+ value_layer=value_layer,
436
+ attention_mask=attention_mask,
437
+ hidden_size_per_partition=self.hidden_size_per_partition,
438
+ layer_id=layer_id,
439
+ layer_past=layer_past,
440
+ use_cache=use_cache
441
+ )
442
+
443
+ output = self.dense(context_layer)
444
+
445
+ outputs = (output, present)
446
+
447
+ if output_attentions:
448
+ outputs += (attention_probs,)
449
+
450
+ return outputs # output, present, attention_probs
451
+
452
+
453
+ class GEGLU(torch.nn.Module):
454
+ def __init__(self):
455
+ super().__init__()
456
+ self.activation_fn = F.gelu
457
+
458
+ def forward(self, x):
459
+ # dim=-1 breaks in jit for pt<1.10
460
+ x1, x2 = x.chunk(2, dim=(x.ndim - 1))
461
+ return x1 * self.activation_fn(x2)
462
+
463
+
464
+ class GLU(torch.nn.Module):
465
+ def __init__(self, hidden_size, inner_hidden_size=None,
466
+ layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float):
467
+ super(GLU, self).__init__()
468
+ self.layer_id = layer_id
469
+ self.activation_func = activation_func
470
+
471
+ # Project to 4h.
472
+ self.hidden_size = hidden_size
473
+ if inner_hidden_size is None:
474
+ inner_hidden_size = 4 * hidden_size
475
+ self.inner_hidden_size = inner_hidden_size
476
+ self.dense_h_to_4h = skip_init(
477
+ torch.nn.Linear,
478
+ self.hidden_size,
479
+ self.inner_hidden_size,
480
+ bias=bias,
481
+ dtype=params_dtype,
482
+ )
483
+ # Project back to h.
484
+ self.dense_4h_to_h = skip_init(
485
+ torch.nn.Linear,
486
+ self.inner_hidden_size,
487
+ self.hidden_size,
488
+ bias=bias,
489
+ dtype=params_dtype,
490
+ )
491
+
492
+ def forward(self, hidden_states):
493
+ """
494
+ hidden_states: [seq_len, batch, hidden_size]
495
+ """
496
+
497
+ # [seq_len, batch, inner_hidden_size]
498
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
499
+
500
+ intermediate_parallel = self.activation_func(intermediate_parallel)
501
+
502
+ output = self.dense_4h_to_h(intermediate_parallel)
503
+
504
+ return output
505
+
506
+
507
+ class GLMBlock(torch.nn.Module):
508
+ def __init__(
509
+ self,
510
+ hidden_size,
511
+ num_attention_heads,
512
+ layernorm_epsilon,
513
+ layer_id,
514
+ inner_hidden_size=None,
515
+ hidden_size_per_attention_head=None,
516
+ layernorm=LayerNorm,
517
+ use_bias=True,
518
+ params_dtype=torch.float,
519
+ num_layers=28,
520
+ position_encoding_2d=True
521
+ ):
522
+ super(GLMBlock, self).__init__()
523
+ # Set output layer initialization if not provided.
524
+
525
+ self.layer_id = layer_id
526
+
527
+ # Layernorm on the input data.
528
+ self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
529
+
530
+ self.position_encoding_2d = position_encoding_2d
531
+
532
+ # Self attention.
533
+ self.attention = SelfAttention(
534
+ hidden_size,
535
+ num_attention_heads,
536
+ layer_id,
537
+ hidden_size_per_attention_head=hidden_size_per_attention_head,
538
+ bias=use_bias,
539
+ params_dtype=params_dtype,
540
+ position_encoding_2d=self.position_encoding_2d
541
+ )
542
+
543
+ # Layernorm on the input data.
544
+ self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
545
+
546
+ self.num_layers = num_layers
547
+
548
+ # GLU
549
+ self.mlp = GLU(
550
+ hidden_size,
551
+ inner_hidden_size=inner_hidden_size,
552
+ bias=use_bias,
553
+ layer_id=layer_id,
554
+ params_dtype=params_dtype,
555
+ )
556
+
557
+ def forward(
558
+ self,
559
+ hidden_states: torch.Tensor,
560
+ position_ids,
561
+ attention_mask: torch.Tensor,
562
+ layer_id,
563
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
564
+ use_cache: bool = False,
565
+ output_attentions: bool = False,
566
+ ):
567
+ """
568
+ hidden_states: [seq_len, batch, hidden_size]
569
+ attention_mask: [(1, 1), seq_len, seq_len]
570
+ """
571
+
572
+ # Layer norm at the begining of the transformer layer.
573
+ # [seq_len, batch, hidden_size]
574
+ attention_input = self.input_layernorm(hidden_states)
575
+
576
+ # Self attention.
577
+ attention_outputs = self.attention(
578
+ attention_input,
579
+ position_ids,
580
+ attention_mask=attention_mask,
581
+ layer_id=layer_id,
582
+ layer_past=layer_past,
583
+ use_cache=use_cache,
584
+ output_attentions=output_attentions
585
+ )
586
+
587
+ attention_output = attention_outputs[0]
588
+
589
+ outputs = attention_outputs[1:]
590
+
591
+ # Residual connection.
592
+ alpha = (2 * self.num_layers) ** 0.5
593
+ hidden_states = attention_input * alpha + attention_output
594
+
595
+ mlp_input = self.post_attention_layernorm(hidden_states)
596
+
597
+ # MLP.
598
+ mlp_output = self.mlp(mlp_input)
599
+
600
+ # Second residual connection.
601
+ output = mlp_input * alpha + mlp_output
602
+
603
+ if use_cache:
604
+ outputs = (output,) + outputs
605
+ else:
606
+ outputs = (output,) + outputs[1:]
607
+
608
+ return outputs # hidden_states, present, attentions
609
+
610
+
611
+ class ChatGLMPreTrainedModel(PreTrainedModel):
612
+ """
613
+ An abstract class to handle weights initialization and
614
+ a simple interface for downloading and loading pretrained models.
615
+ """
616
+
617
+ is_parallelizable = False
618
+ supports_gradient_checkpointing = False
619
+ config_class = ChatGLMConfig
620
+ base_model_prefix = "transformer"
621
+ _no_split_modules = ["GLM6BBlock"]
622
+
623
+ def __init__(self, *inputs, **kwargs):
624
+ super().__init__(*inputs, **kwargs)
625
+
626
+ def _init_weights(self, module: nn.Module):
627
+ """Initialize the weights."""
628
+ return
629
+
630
+
631
+ CHATGLM_6B_START_DOCSTRING = r"""
632
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
633
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
634
+ usage and behavior.
635
+
636
+ Parameters:
637
+ config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
638
+ Initializing with a config file does not load the weights associated with the model, only the configuration.
639
+ Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
640
+ """
641
+
642
+ CHATGLM_6B_INPUTS_DOCSTRING = r"""
643
+ Args:
644
+ input_ids (`torch.LongTensor` of shape `({0})`):
645
+ Indices of input sequence tokens in the vocabulary.
646
+
647
+ Indices can be obtained using [`ChatGLM6BTokenizer`].
648
+ See [`PreTrainedTokenizer.encode`] and
649
+ [`PreTrainedTokenizer.__call__`] for details.
650
+
651
+ [What are input IDs?](../glossary#input-ids)
652
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
653
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
654
+
655
+ - 1 for tokens that are **not masked**,
656
+ - 0 for tokens that are **masked**.
657
+
658
+ [What are attention masks?](../glossary#attention-mask)
659
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
660
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
661
+
662
+ - 0 corresponds to a *sentence A* token,
663
+ - 1 corresponds to a *sentence B* token.
664
+
665
+ [What are token type IDs?](../glossary#token-type-ids)
666
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
667
+ Indices of positions of each input sequence tokens in the position embeddings.
668
+ Selected in the range `[0, config.max_position_embeddings - 1]`.
669
+
670
+ [What are position IDs?](../glossary#position-ids)
671
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
672
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
673
+
674
+ - 1 indicates the head is **not masked**,
675
+ - 0 indicates the head is **masked**.
676
+
677
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
678
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
679
+ This is useful if you want more control over how to convert *input_ids* indices into associated vectors
680
+ than the model's internal embedding lookup matrix.
681
+ output_attentions (`bool`, *optional*):
682
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
683
+ tensors for more detail.
684
+ output_hidden_states (`bool`, *optional*):
685
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
686
+ more detail.
687
+ return_dict (`bool`, *optional*):
688
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
689
+ """
690
+
691
+
692
+ @add_start_docstrings(
693
+ "The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
694
+ CHATGLM_6B_START_DOCSTRING,
695
+ )
696
+ class ChatGLMModel(ChatGLMPreTrainedModel):
697
+ """
698
+
699
+ The model can behave as an encoder (with only self-attention) as well
700
+ as a decoder, in which case a layer of cross-attention is added between
701
+ the self-attention layers, following the architecture described in [Attention is
702
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
703
+ Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
704
+
705
+ To behave as an decoder the model needs to be initialized with the
706
+ `is_decoder` argument of the configuration set to `True`.
707
+ To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
708
+ argument and `add_cross_attention` set to `True`; an
709
+ `encoder_hidden_states` is then expected as an input to the forward pass.
710
+ """
711
+
712
+ def __init__(self, config: ChatGLMConfig):
713
+ super().__init__(config)
714
+
715
+ # recording parameters
716
+ self.max_sequence_length = config.max_sequence_length
717
+ self.hidden_size = config.hidden_size
718
+ self.params_dtype = torch.half
719
+ self.num_attention_heads = config.num_attention_heads
720
+ self.vocab_size = config.vocab_size
721
+ self.num_layers = config.num_layers
722
+ self.layernorm_epsilon = config.layernorm_epsilon
723
+ self.inner_hidden_size = config.inner_hidden_size
724
+ self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
725
+ self.position_encoding_2d = config.position_encoding_2d
726
+
727
+ self.word_embeddings = skip_init(
728
+ torch.nn.Embedding,
729
+ num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
730
+ dtype=self.params_dtype
731
+ )
732
+
733
+ def get_layer(layer_id):
734
+ return GLMBlock(
735
+ self.hidden_size,
736
+ self.num_attention_heads,
737
+ self.layernorm_epsilon,
738
+ layer_id,
739
+ inner_hidden_size=self.inner_hidden_size,
740
+ hidden_size_per_attention_head=self.hidden_size_per_attention_head,
741
+ layernorm=LayerNorm,
742
+ use_bias=True,
743
+ params_dtype=self.params_dtype,
744
+ position_encoding_2d=self.position_encoding_2d,
745
+ )
746
+
747
+ self.layers = torch.nn.ModuleList(
748
+ [get_layer(layer_id) for layer_id in range(self.num_layers)]
749
+ )
750
+
751
+ # Final layer norm before output.
752
+ self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
753
+
754
+ def get_input_embeddings(self):
755
+ return self.word_embeddings
756
+
757
+ def set_input_embeddings(self, new_embeddings: torch.Tensor):
758
+ self.word_embeddings = new_embeddings
759
+
760
+ def get_masks(self, seq, device):
761
+ context_length = seq.index(self.config.bos_token_id) + 1
762
+
763
+ attention_mask = torch.ones((1, len(seq), len(seq)), device=device)
764
+ attention_mask.tril_()
765
+ attention_mask[..., :context_length - 1] = 1
766
+ attention_mask.unsqueeze_(1)
767
+ attention_mask = (attention_mask < 0.5).bool()
768
+
769
+ return attention_mask
770
+
771
+ def get_position_ids(self, seq, mask_position, device, gmask=False):
772
+ context_length = seq.index(self.config.bos_token_id) + 1
773
+ if self.position_encoding_2d:
774
+ seq_length = seq.index(self.config.bos_token_id)
775
+ position_ids = torch.arange(context_length, dtype=torch.long, device=device)
776
+ if not gmask:
777
+ position_ids[seq_length:] = mask_position
778
+ block_position_ids = torch.cat((
779
+ torch.zeros(seq_length, dtype=torch.long, device=device),
780
+ torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
781
+ ))
782
+ position_ids = torch.stack((position_ids, block_position_ids), dim=0)
783
+ else:
784
+ position_ids = torch.arange(context_length, dtype=torch.long, device=device)
785
+ if not gmask:
786
+ position_ids[context_length - 1:] = mask_position
787
+
788
+ position_ids = position_ids.unsqueeze(0)
789
+
790
+ return position_ids
791
+
792
+ @add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
793
+ @add_code_sample_docstrings(
794
+ checkpoint=_CHECKPOINT_FOR_DOC,
795
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
796
+ config_class=_CONFIG_FOR_DOC,
797
+ )
798
+ def forward(
799
+ self,
800
+ input_ids: Optional[torch.LongTensor] = None,
801
+ position_ids: Optional[torch.LongTensor] = None,
802
+ attention_mask: Optional[torch.Tensor] = None,
803
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
804
+ inputs_embeds: Optional[torch.LongTensor] = None,
805
+ use_cache: Optional[bool] = None,
806
+ output_attentions: Optional[bool] = None,
807
+ output_hidden_states: Optional[bool] = None,
808
+ return_dict: Optional[bool] = None,
809
+ ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
810
+
811
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
812
+ output_hidden_states = (
813
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
814
+ )
815
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
816
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
817
+
818
+ if input_ids is not None and inputs_embeds is not None:
819
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
820
+ elif input_ids is not None:
821
+ batch_size, seq_length = input_ids.shape[:2]
822
+ elif inputs_embeds is not None:
823
+ batch_size, seq_length, _ = inputs_embeds.shape[:2]
824
+ else:
825
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
826
+
827
+ if past_key_values is None:
828
+ past_key_values = tuple([None] * len(self.layers))
829
+ seq = input_ids[0].tolist()
830
+
831
+ if attention_mask is None:
832
+ attention_mask = self.get_masks(
833
+ seq=seq,
834
+ device=input_ids.device
835
+ )
836
+
837
+ if position_ids is None:
838
+ MASK, gMASK = 150000, 150001
839
+ mask_token = MASK if MASK in input_ids else gMASK
840
+ use_gmask = False if MASK in input_ids else gMASK
841
+
842
+ mask_position = seq.index(mask_token)
843
+ position_ids = self.get_position_ids(
844
+ seq=seq,
845
+ mask_position=mask_position,
846
+ device=input_ids.device,
847
+ gmask=use_gmask
848
+ )
849
+
850
+ if inputs_embeds is None:
851
+ inputs_embeds = self.word_embeddings(input_ids)
852
+
853
+ # [seq_len, batch, hidden_size]
854
+ hidden_states = inputs_embeds.transpose(0, 1)
855
+
856
+ presents = () if use_cache else None
857
+ all_self_attentions = () if output_attentions else None
858
+ all_hidden_states = () if output_hidden_states else None
859
+
860
+ seq_length_with_past = seq_length
861
+ past_key_values_length = 0
862
+ if past_key_values[0] is not None:
863
+ past_key_values_length = past_key_values[0][0].shape[0]
864
+ seq_length_with_past = seq_length_with_past + past_key_values_length
865
+ if attention_mask is None:
866
+ attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
867
+
868
+ else:
869
+ attention_mask = attention_mask.to(input_ids.device)
870
+
871
+ for i, layer in enumerate(self.layers):
872
+
873
+ if output_hidden_states:
874
+ all_hidden_states = all_hidden_states + (hidden_states,)
875
+
876
+ layer_ret = layer(
877
+ hidden_states,
878
+ position_ids=position_ids,
879
+ attention_mask=attention_mask,
880
+ layer_id=torch.tensor(i),
881
+ layer_past=past_key_values[i],
882
+ use_cache=use_cache,
883
+ output_attentions=output_attentions
884
+ )
885
+
886
+ hidden_states = layer_ret[0]
887
+
888
+ if use_cache:
889
+ presents = presents + (layer_ret[1],)
890
+
891
+ if output_attentions:
892
+ all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)
893
+
894
+ # Final layer norm.
895
+ hidden_states = self.final_layernorm(hidden_states)
896
+
897
+ if output_hidden_states:
898
+ all_hidden_states = all_hidden_states + (hidden_states,)
899
+
900
+ if not return_dict:
901
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
902
+
903
+ return BaseModelOutputWithPast(
904
+ last_hidden_state=hidden_states,
905
+ past_key_values=presents,
906
+ hidden_states=all_hidden_states,
907
+ attentions=all_self_attentions,
908
+ )
909
+
910
+
911
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
912
+ def __init__(self, config):
913
+ super().__init__(config)
914
+
915
+ # self.hidden_size = config.hidden_size
916
+ # self.params_dtype = torch.half
917
+ # self.vocab_size = config.vocab_size
918
+ self.max_sequence_length = config.max_sequence_length
919
+
920
+ self.position_encoding_2d = config.position_encoding_2d
921
+
922
+ self.transformer = ChatGLMModel(config)
923
+
924
+ self.lm_head = skip_init(
925
+ nn.Linear,
926
+ config.hidden_size,
927
+ config.vocab_size,
928
+ bias=False,
929
+ dtype=torch.half
930
+ )
931
+
932
+ def get_output_embeddings(self):
933
+ return self.lm_head
934
+
935
+ def set_output_embeddings(self, new_embeddings):
936
+ self.lm_head = new_embeddings
937
+
938
+ def get_masks_and_position_ids(self, seq, mask_position, context_length, device, gmask=False):
939
+ attention_mask = torch.ones((1, context_length, context_length), device=device)
940
+ attention_mask.tril_()
941
+ attention_mask[..., :context_length - 1] = 1
942
+ attention_mask.unsqueeze_(1)
943
+ attention_mask = (attention_mask < 0.5).bool()
944
+
945
+ if self.position_encoding_2d:
946
+ seq_length = seq.index(self.config.bos_token_id)
947
+ position_ids = torch.arange(context_length, dtype=torch.long, device=device)
948
+ if not gmask:
949
+ position_ids[seq_length:] = mask_position
950
+ block_position_ids = torch.cat((
951
+ torch.zeros(seq_length, dtype=torch.long, device=device),
952
+ torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
953
+ ))
954
+ position_ids = torch.stack((position_ids, block_position_ids), dim=0)
955
+ else:
956
+ position_ids = torch.arange(context_length, dtype=torch.long, device=device)
957
+ if not gmask:
958
+ position_ids[context_length - 1:] = mask_position
959
+
960
+ position_ids = position_ids.unsqueeze(0)
961
+
962
+ return attention_mask, position_ids
963
+
964
+ def prepare_inputs_for_generation(
965
+ self,
966
+ input_ids: torch.LongTensor,
967
+ past: Optional[torch.Tensor] = None,
968
+ past_key_values: Optional[torch.Tensor] = None,
969
+ attention_mask: Optional[torch.Tensor] = None,
970
+ **kwargs
971
+ ) -> dict:
972
+
973
+ MASK, gMASK = 150000, 150001
974
+ mask_token = MASK if MASK in input_ids else gMASK
975
+ use_gmask = False if MASK in input_ids else gMASK
976
+ seq = input_ids[0].tolist()
977
+ mask_position = seq.index(mask_token)
978
+
979
+ if mask_token not in seq:
980
+ raise ValueError("You have to add either [MASK] or [gMASK] in your input")
981
+
982
+ # only last token for input_ids if past is not None
983
+ if past is not None or past_key_values is not None:
984
+ context_length = seq.index(self.config.bos_token_id)
985
+ last_token = input_ids[:, -1].unsqueeze(-1)
986
+ if self.position_encoding_2d:
987
+ position_ids = torch.tensor([[[mask_position], [len(seq) - context_length]]], dtype=torch.long,
988
+ device=input_ids.device)
989
+ else:
990
+ position_ids = torch.tensor([[mask_position]], dtype=torch.long, device=input_ids.device)
991
+
992
+ if past is None:
993
+ past = past_key_values
994
+ return {
995
+ "input_ids": last_token,
996
+ "past_key_values": past,
997
+ "position_ids": position_ids,
998
+ }
999
+ else:
1000
+ attention_mask, position_ids = self.get_masks_and_position_ids(
1001
+ seq=seq,
1002
+ mask_position=mask_position,
1003
+ context_length=len(seq),
1004
+ device=input_ids.device,
1005
+ gmask=use_gmask
1006
+ )
1007
+
1008
+ return {
1009
+ "input_ids": input_ids,
1010
+ "past_key_values": past,
1011
+ "position_ids": position_ids,
1012
+ "attention_mask": attention_mask
1013
+ }
1014
+
1015
+ def forward(
1016
+ self,
1017
+ input_ids: Optional[torch.Tensor] = None,
1018
+ position_ids: Optional[torch.Tensor] = None,
1019
+ attention_mask: Optional[torch.Tensor] = None,
1020
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
1021
+ inputs_embeds: Optional[torch.Tensor] = None,
1022
+ labels: Optional[torch.Tensor] = None,
1023
+ use_cache: Optional[bool] = None,
1024
+ output_attentions: Optional[bool] = None,
1025
+ output_hidden_states: Optional[bool] = None,
1026
+ return_dict: Optional[bool] = None,
1027
+ ):
1028
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1029
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1030
+
1031
+ transformer_outputs = self.transformer(
1032
+ input_ids=input_ids,
1033
+ position_ids=position_ids,
1034
+ attention_mask=attention_mask,
1035
+ past_key_values=past_key_values,
1036
+ inputs_embeds=inputs_embeds,
1037
+ use_cache=use_cache,
1038
+ output_attentions=output_attentions,
1039
+ output_hidden_states=output_hidden_states,
1040
+ return_dict=return_dict,
1041
+ )
1042
+
1043
+ hidden_states = transformer_outputs[0]
1044
+
1045
+ lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()
1046
+
1047
+ loss = None
1048
+ if labels is not None:
1049
+ lm_logits = lm_logits.to(torch.float32)
1050
+
1051
+ # Shift so that tokens < n predict n
1052
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1053
+ shift_labels = labels[..., 1:].contiguous()
1054
+ # Flatten the tokens
1055
+ loss_fct = CrossEntropyLoss()
1056
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1057
+
1058
+ lm_logits = lm_logits.to(hidden_states.dtype)
1059
+ loss = loss.to(hidden_states.dtype)
1060
+
1061
+ if not return_dict:
1062
+ output = (lm_logits,) + transformer_outputs[1:]
1063
+ return ((loss,) + output) if loss is not None else output
1064
+
1065
+ return CausalLMOutputWithPast(
1066
+ loss=loss,
1067
+ logits=lm_logits,
1068
+ past_key_values=transformer_outputs.past_key_values,
1069
+ hidden_states=transformer_outputs.hidden_states,
1070
+ attentions=transformer_outputs.attentions,
1071
+ )
1072
+
1073
+ @staticmethod
1074
+ def _reorder_cache(
1075
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
1076
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
1077
+ """
1078
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1079
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1080
+ beam_idx at every generation step.
1081
+
1082
+ Output shares the same memory storage as `past`.
1083
+ """
1084
+ return tuple(
1085
+ (
1086
+ layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
1087
+ layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
1088
+ )
1089
+ for layer_past in past
1090
+ )
1091
+
1092
+ def process_response(self, response):
1093
+ response = response.strip()
1094
+ response = response.replace("[[训练时间]]", "2023年")
1095
+ punkts = [
1096
+ [",", ","],
1097
+ ["!", "!"],
1098
+ [":", ":"],
1099
+ [";", ";"],
1100
+ ["\?", "?"],
1101
+ ]
1102
+ for item in punkts:
1103
+ response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
1104
+ response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
1105
+ return response
1106
+
1107
+ @torch.no_grad()
1108
+ def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
1109
+ do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
1110
+ if history is None:
1111
+ history = []
1112
+ if logits_processor is None:
1113
+ logits_processor = LogitsProcessorList()
1114
+ logits_processor.append(InvalidScoreLogitsProcessor())
1115
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1116
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1117
+ if not history:
1118
+ prompt = query
1119
+ else:
1120
+ prompt = ""
1121
+ for i, (old_query, response) in enumerate(history):
1122
+ prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
1123
+ prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
1124
+ input_ids = tokenizer([prompt], return_tensors="pt", padding=True)
1125
+ input_ids = input_ids.to(self.device)
1126
+ outputs = self.generate(**input_ids, **gen_kwargs)
1127
+ outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):]
1128
+ response = tokenizer.decode(outputs)
1129
+ response = self.process_response(response)
1130
+ history = history + [(query, response)]
1131
+ return response, history
1132
+
1133
+ @torch.no_grad()
1134
+ def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048,
1135
+ do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
1136
+ if history is None:
1137
+ history = []
1138
+ if logits_processor is None:
1139
+ logits_processor = LogitsProcessorList()
1140
+ logits_processor.append(InvalidScoreLogitsProcessor())
1141
+ gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
1142
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1143
+ if not history:
1144
+ prompt = query
1145
+ else:
1146
+ prompt = ""
1147
+ for i, (old_query, response) in enumerate(history):
1148
+ prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
1149
+ prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
1150
+ input_ids = tokenizer([prompt], return_tensors="pt", padding=True)
1151
+ input_ids = input_ids.to(self.device)
1152
+ for outputs in self.stream_generate(**input_ids, **gen_kwargs):
1153
+ outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):]
1154
+ response = tokenizer.decode(outputs)
1155
+ response = self.process_response(response)
1156
+ new_history = history + [(query, response)]
1157
+ yield response, new_history
1158
+
1159
+ @torch.no_grad()
1160
+ def stream_generate(
1161
+ self,
1162
+ input_ids,
1163
+ generation_config: Optional[GenerationConfig] = None,
1164
+ logits_processor: Optional[LogitsProcessorList] = None,
1165
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1166
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1167
+ **kwargs,
1168
+ ):
1169
+ batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
1170
+
1171
+ if generation_config is None:
1172
+ generation_config = self.generation_config
1173
+ generation_config = copy.deepcopy(generation_config)
1174
+ model_kwargs = generation_config.update(**kwargs)
1175
+ bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
1176
+
1177
+ if isinstance(eos_token_id, int):
1178
+ eos_token_id = [eos_token_id]
1179
+
1180
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1181
+ if has_default_max_length and generation_config.max_new_tokens is None:
1182
+ warnings.warn(
1183
+ f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
1184
+ "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
1185
+ " recommend using `max_new_tokens` to control the maximum length of the generation.",
1186
+ UserWarning,
1187
+ )
1188
+ elif generation_config.max_new_tokens is not None:
1189
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
1190
+ if not has_default_max_length:
1191
+ logger.warn(
1192
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
1193
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
1194
+ "Please refer to the documentation for more information. "
1195
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
1196
+ UserWarning,
1197
+ )
1198
+
1199
+ if input_ids_seq_length >= generation_config.max_length:
1200
+ input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1201
+ logger.warning(
1202
+ f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
1203
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1204
+ " increasing `max_new_tokens`."
1205
+ )
1206
+
1207
+ # 2. Set generation parameters if not already defined
1208
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
1209
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
1210
+
1211
+ logits_processor = self._get_logits_processor(
1212
+ generation_config=generation_config,
1213
+ input_ids_seq_length=input_ids_seq_length,
1214
+ encoder_input_ids=input_ids,
1215
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1216
+ logits_processor=logits_processor,
1217
+ )
1218
+
1219
+ stopping_criteria = self._get_stopping_criteria(
1220
+ generation_config=generation_config, stopping_criteria=stopping_criteria
1221
+ )
1222
+ logits_warper = self._get_logits_warper(generation_config)
1223
+
1224
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
1225
+ scores = None
1226
+ while True:
1227
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
1228
+ # forward pass to get next token
1229
+ outputs = self(
1230
+ **model_inputs,
1231
+ return_dict=True,
1232
+ output_attentions=False,
1233
+ output_hidden_states=False,
1234
+ )
1235
+
1236
+ next_token_logits = outputs.logits[:, -1, :]
1237
+
1238
+ # pre-process distribution
1239
+ next_token_scores = logits_processor(input_ids, next_token_logits)
1240
+ next_token_scores = logits_warper(input_ids, next_token_scores)
1241
+
1242
+ # sample
1243
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
1244
+ if generation_config.do_sample:
1245
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
1246
+ else:
1247
+ next_tokens = torch.argmax(probs, dim=-1)
1248
+
1249
+ # update generated ids, model inputs, and length for next step
1250
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
1251
+ model_kwargs = self._update_model_kwargs_for_generation(
1252
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
1253
+ )
1254
+ unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
1255
+
1256
+ # stop when each sentence is finished, or if we exceed the maximum length
1257
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
1258
+ break
1259
+ yield input_ids
1260
+
1261
+ def quantize(self, bits: int):
1262
+ from .quantization import quantize
1263
+ self.transformer = quantize(self.transformer, bits)
1264
+ return self
requirements.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # int8
2
+ bitsandbytes==0.37.1
3
+ accelerate==0.17.1
4
+
5
+ # chatglm
6
+ protobuf>=3.19.5,<3.20.1
7
+ transformers==4.27.1
8
+ icetk
9
+ cpm_kernels==1.0.11
10
+
11
+ #
12
+ datasets==2.10.1
13
+ git+https://github.com/huggingface/peft.git # 最新版本 >=0.3.0.dev0
14
+
15
+ -f https://download.pytorch.org/whl/cpu
16
+ torch
17
+ -f https://download.pytorch.org/whl/cpu
18
+ torchvision
19
+ -f https://download.pytorch.org/whl/cpu
20
+ torchaudio