Spaces:
Configuration error
Configuration error
File size: 11,362 Bytes
c86ce41 daefb20 c86ce41 d14fa82 c86ce41 d14fa82 c86ce41 d14fa82 c86ce41 d14fa82 c86ce41 d14fa82 c86ce41 12b7f87 c86ce41 12b7f87 c86ce41 12b7f87 0339f70 c86ce41 d14fa82 c86ce41 d14fa82 c86ce41 12b7f87 c86ce41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import torch
import random
import gradio as gr
from glob import glob
from omegaconf import OmegaConf
from safetensors import safe_open
from diffusers import AutoencoderKL
from diffusers import EulerDiscreteScheduler, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.utils.util import save_videos_grid
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
pretrained_model_path = "models/StableDiffusion/stable-diffusion-v1-5"
inference_config_path = "configs/inference/long-inference.yaml"
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
examples = [
# 12-EpicRealism
[
"photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3",
"blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation",
512, 512, 32, "1490157606650685400"
],
# 2-EpicRealism
[
"a young man is dancing in a paris nice street",
"wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation render, illustration, deformed, distorted, disfigured, doll, poorly drawn, bad anatomy, wrong anatomy deformed, naked, nude, breast (worst quality low quality: 1.4)",
512, 512, 32, "1"
],
]
print(f"### Cleaning cached examples ...")
os.system(f"rm -rf gradio_cached_examples/")
class AnimateController:
def __init__(self):
# config dirs
self.basedir = os.getcwd()
self.stable_diffusion_dir = os.path.join(self.basedir, "models", "StableDiffusion")
self.motion_module_dir = os.path.join(self.basedir, "models", "Motion_Module")
self.personalized_model_dir = os.path.join(self.basedir, "models", "DreamBooth_LoRA")
self.savedir = os.path.join(self.basedir, "samples")
os.makedirs(self.savedir, exist_ok=True)
self.selected_base_model = None
self.selected_motion_module = None
self.refresh_motion_module()
self.refresh_personalized_model()
# config models
self.inference_config = OmegaConf.load(inference_config_path)
self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
self.vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").cuda()
self.text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").cuda()
self.unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda()
self.base_model_list = ['epiCRealismNaturalSin.safetensors']
self.motion_module_list = ['lt_long_mm_32_frames.ckpt']
print(self.base_model_list[0])
self.update_base_model(self.base_model_list[0])
self.update_motion_module(self.motion_module_list[0])
def refresh_motion_module(self):
motion_module_list = glob(os.path.join(self.motion_module_dir, "*.ckpt"))
self.motion_module_list = [os.path.basename(p) for p in motion_module_list]
def refresh_personalized_model(self):
base_model_list = glob(os.path.join(self.personalized_model_dir, "*.safetensors"))
self.base_model_list = [os.path.basename(p) for p in base_model_list]
def update_base_model(self, base_model_dropdown):
self.selected_base_model = base_model_dropdown
base_model_dropdown = os.path.join(self.personalized_model_dir, base_model_dropdown)
base_model_state_dict = {}
with safe_open(base_model_dropdown, framework="pt", device="cpu") as f:
for key in f.keys(): base_model_state_dict[key] = f.get_tensor(key)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(base_model_state_dict, self.vae.config)
self.vae.load_state_dict(converted_vae_checkpoint)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(base_model_state_dict, self.unet.config)
self.unet.load_state_dict(converted_unet_checkpoint, strict=False)
self.text_encoder = convert_ldm_clip_checkpoint(base_model_state_dict)
def update_motion_module(self, motion_module_dropdown):
self.selected_motion_module = motion_module_dropdown
motion_module_dropdown = os.path.join(self.motion_module_dir, motion_module_dropdown)
motion_module_state_dict = torch.load(motion_module_dropdown, map_location="cpu")
_, unexpected = self.unet.load_state_dict(motion_module_state_dict, strict=False)
assert len(unexpected) == 0
def animate(
self,
prompt_textbox,
negative_prompt_textbox,
width_slider,
height_slider,
video_length,
seed_textbox,
):
# if base_model_dropdown != self.selected_base_model: self.update_base_model(base_model_dropdown)
# if motion_module_dropdown != self.selected_motion_module: self.update_motion_module(motion_module_dropdown)
if is_xformers_available(): self.unet.enable_xformers_memory_efficient_attention()
pipeline = AnimationPipeline(
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet,
scheduler=DDIMScheduler(**OmegaConf.to_container(self.inference_config.noise_scheduler_kwargs))
).to("cuda")
if int(seed_textbox) > 0: seed = int(seed_textbox)
else: seed = random.randint(1, 1e16)
torch.manual_seed(int(seed))
assert seed == torch.initial_seed()
print(f"### seed: {seed}")
generator = torch.Generator(device="cuda")
generator.manual_seed(seed)
sample = pipeline(
prompt_textbox,
negative_prompt = negative_prompt_textbox,
num_inference_steps = 25,
guidance_scale = 8.,
width = width_slider,
height = height_slider,
video_length = video_length,
generator = generator,
).videos
save_sample_path = os.path.join(self.savedir, f"sample.mp4")
save_videos_grid(sample, save_sample_path)
json_config = {
"prompt": prompt_textbox,
"n_prompt": negative_prompt_textbox,
"width": width_slider,
"height": height_slider,
"seed": seed,
}
return save_sample_path, json_config
print(f'gradio version is {gr.__version__}')
controller = AnimateController()
def ui():
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# [LongAnimateDiff](https://github.com/Lightricks/LongAnimateDiff)
[Sapir Weissbuch](https://github.com/SapirW), [Naomi Ken Korem](https://github.com/Naomi-Ken-Korem), [Daniel Shalem](https://github.com/dshalem), [Yoav HaCohen](https://github.com/yoavhacohen) | Lightricks Research
"""
)
gr.Markdown(
"""
### Quick Start
1. Provide `Prompt` and `Negative Prompt` for each model. You are encouraged to refer to each model's webpage on CivitAI to learn how to write prompts for them. Below are the DreamBooth models in this demo. Click to visit their homepage.
- [`toonyou_beta3.safetensors`](https://civitai.com/models/30240?modelVersionId=78775)
- [`epiCRealismNatural.safetensors`](https://civitai.com/models/25694/epicrealism)
2. Select 'Length' to set the length of the generated video.
(When you are working with ComfyUI try all possible length, with different motion_scale)
3. Click `Generate`, wait for ~2 min, and enjoy.
4. In order to effectively utilize 'lt_long_mm_16_64_frames' model, it is highly recommended to use the ComfyUI interface, which enables to easily increase 'motion_scale'.
"""
)
with gr.Row():
with gr.Column():
# base_model_dropdown = gr.Dropdown( label="Base DreamBooth Model", choices=controller.base_model_list, value=controller.base_model_list[0], interactive=True )
# motion_module_dropdown = gr.Dropdown( label="Motion Module", choices=controller.motion_module_list, value=controller.motion_module_list[0], interactive=True )
# base_model_dropdown.change(fn=controller.update_base_model, inputs=[base_model_dropdown], outputs=[base_model_dropdown])
# motion_module_dropdown.change(fn=controller.update_motion_module, inputs=[motion_module_dropdown], outputs=[motion_module_dropdown])
prompt_textbox = gr.Textbox( label="Prompt", lines=3 )
negative_prompt_textbox = gr.Textbox( label="Negative Prompt", lines=3, value="worst quality, low quality, nsfw, logo")
video_length = gr.Slider( label="Length", value=32, minimum=16, maximum=32, step=4 )
with gr.Accordion("Advance", open=False):
with gr.Row():
width_slider = gr.Slider( label="Width", value=512, minimum=256, maximum=1024, step=64 )
height_slider = gr.Slider( label="Height", value=512, minimum=256, maximum=1024, step=64 )
with gr.Row():
seed_textbox = gr.Textbox( label="Seed", value=-1)
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e16)), inputs=[], outputs=[seed_textbox])
generate_button = gr.Button( value="Generate", variant='primary' )
with gr.Column():
result_video = gr.Video( label="Generated Animation", interactive=False )
json_config = gr.Json( label="Config", value=None )
inputs = [prompt_textbox, negative_prompt_textbox, width_slider, height_slider, video_length, seed_textbox]
outputs = [result_video, json_config]
generate_button.click( fn=controller.animate, inputs=inputs, outputs=outputs )
gr.Examples( fn=controller.animate, examples=examples, inputs=inputs, outputs=outputs, cache_examples=True )
return demo
if __name__ == "__main__":
demo = ui()
demo.queue(max_size=20)
demo.launch() |