File size: 50,853 Bytes
fa0a93c
 
 
 
 
 
 
3df8e40
 
 
9149dbe
fa0a93c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
'''
from https://github.com/amirveyseh/MadDog under CC BY-NC-SA 4.0
'''

import string

if __name__ != "__main__":
    import spacy.cli

    spacy.cli.download("en_core_web_sm")

    import spacy

    nlp = spacy.load("en_core_web_sm")

with open('stopWords.txt') as file:
    stop_words = [l.strip() for l in file.readlines()]


class Extractor:
    def __init__(self):
        pass

    def short_extract(self, sentence, threshold, starting_lower_case, ignore_dot=False):
        shorts = []
        for i, t in enumerate(sentence):
            if ignore_dot:
                t = t.replace('.', '')
                # t = t.replace('-','')
            if len(t) == 0:
                continue
            # FIXED [issue: of an enhanced Node B ( eNB ) ]
            if not starting_lower_case:
                if t[0].isupper() and len([c for c in t if c.isupper()]) / len(t) > threshold and 2 <= len(t) <= 10:
                    shorts.append(i)
            else:
                if len([c for c in t if c.isupper()]) / len(t) > threshold and 2 <= len(t) <= 10:
                    shorts.append(i)
        return shorts

    def extract_cand_long(self, sentence, token, ind, ignore_punc=False, add_punc=False, small_window=False):
        '''
        extract candidate long form of the form "long form (short form)" or "short form (long form)"

        :param sentence: tokenized sentence
        :param token: acronym
        :param ind: position of the acronym
        :return: candidate long form, candidate is on left or right of the short form
        '''
        if not small_window:
            long_cand_length = min([len(token) + 10, len(token) * 3])
        else:
            long_cand_length = min([len(token) + 5, len(token) * 2])
        cand_long = []
        cand_long_index = []
        left = True
        right_ind = 1
        left_ind = 1
        # FIXED [issue: ]
        if add_punc:
            excluded_puncs = ['=', ':']
        else:
            excluded_puncs = []
        # FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
        if ignore_punc:
            while ind + right_ind < len(sentence) and sentence[ind + right_ind] in [p for p in string.punctuation if
                                                                                    p != '(' and p != ')' and p not in excluded_puncs]:
                right_ind += 1
            while ind - left_ind > 0 and sentence[ind - left_ind] in [p for p in string.punctuation if
                                                                      p != '(' and p != ')' and p not in excluded_puncs]:
                left_ind -= 1
        ####
        if ind < len(sentence) - 2 - right_ind and (
                sentence[ind + right_ind] == '(' or sentence[ind + right_ind] == '=' or sentence[
            ind + right_ind] in excluded_puncs):
            left = False
            for j in range(ind + right_ind + 1, min([ind + right_ind + 1 + long_cand_length, len(sentence)])):
                if sentence[j] != ')':
                    cand_long.append(sentence[j])
                    cand_long_index.append(j)
                else:
                    break
        elif 1 < ind - (left_ind - 1) and ind + right_ind < len(sentence) and (
                (sentence[ind - left_ind] == '(' and sentence[ind + right_ind] == ')') or sentence[
            ind - left_ind] in excluded_puncs):
            for k in range(0, long_cand_length):
                j = ind - left_ind - 1 - k
                if j > -1:
                    cand_long.insert(0, sentence[j])
                    cand_long_index.insert(0, j)
        return cand_long, cand_long_index, left

    # FIXED [issue: The Stopping Trained in America PhDs from Leaving the Economy Act ( or STAPLE Act ) has bee introduced]
    def extract_high_recall_cand_long(self, sentence, token, ind, small_window=False, left=False):
        '''
        Find the candidate long form for a give acronym for high recall extraction
        example: The Stopping Trained in America PhDs from Leaving the Economy Act ( or STAPLE Act ) has bee introduced

        :param sentence:
        :param token:
        :param ind:
        :param small_window:
        :return:
        '''
        long_cand_length = min([len(token) + 10, len(token) * 3])
        cand_long = []
        cand_long_index = []
        if not left:
            for j in range(ind + 1, min([ind + long_cand_length, len(sentence)])):
                cand_long.append(sentence[j])
                cand_long_index.append(j)
        else:
            for k in range(0, long_cand_length):
                j = ind - 1 - k
                if j > -1:
                    cand_long.insert(0, sentence[j])
                    cand_long_index.insert(0, j)
        return cand_long, cand_long_index, left

    def create_diction(self, sentence, labels, all_acronyms=True, tag='', map_chars=False, diction={}):
        '''
        convert sequential labels into {short-form: long-form} dictionary

        :param sentence: tokenized sentence
        :param labels: labels of form B-short, B-long, I-short, I-long, O
        :return: dictionary
        '''
        shorts = []
        longs = []
        isShort = True
        phr = []
        for i in range(len(sentence)):
            if labels[i] == 'O' or (isShort and 'long' in labels[i]) or (not isShort and 'short' in labels[i]) or (
            labels[i].startswith('B')):
                if len(phr):
                    if isShort:
                        shorts.append((phr[0], phr[-1]))
                    else:
                        longs.append((phr[0], phr[-1]))
                    phr = []
            if 'short' in labels[i]:
                isShort = True
                phr.append(i)
            if 'long' in labels[i]:
                isShort = False
                phr.append(i)
        if len(phr):
            if isShort:
                shorts.append((phr[0], phr[-1]))
            else:
                longs.append((phr[0], phr[-1]))
        acr_long = {}
        for long in longs:
            best_short = []
            ## check if the long form is already mapped in given diction
            if long in diction and diction[long] in shorts:
                best_short = diction[long]
            best_dist = float('inf')
            #### FIXED [issue: long form incorrectly mapped to the closest acronym in the sentence]
            #### FIXED [issue: multiple short forms could be character matched with the long form]
            if not best_short:
                best_short_cands = []
                for short in shorts:
                    long_form = self.character_match(sentence[short[0]], sentence[long[0]:long[1] + 1],
                                                     list(range(long[1] + 1 - long[0])), output_string=True,
                                                     is_candidate=False)
                    if long_form:
                        best_short_cands.append(short)
                if len(best_short_cands) == 1:
                    best_short = best_short_cands[0]
            #####
            #### FIXED [QALD-6 (the workshop of question answering over linked-data 6) at ESWIC 2016]
            if not best_short and map_chars:
                best_short_cands = []
                for short in shorts:
                    long_form = self.map_chars(sentence[short[0]], sentence[long[0]:long[1] + 1])
                    if long_form:
                        best_short_cands.append(short)
                if len(best_short_cands) == 1:
                    best_short = best_short_cands[0]
            ####
            #### FIXED [issue: US Securities and Exchange Commission EDGAR ( SEC ) database]
            if not best_short:
                best_short_cands = []
                for short in shorts:
                    is_mapped = self.map_chars_with_capitals(sentence[short[0]], sentence[long[0]:long[1] + 1])
                    if is_mapped:
                        best_short_cands.append(short)
                if len(best_short_cands) == 1:
                    best_short = best_short_cands[0]
            ####
            # FIXED [issue: RNNs , Long Short - Term Memory ( LSTM ) architecture]
            if not best_short and long[1] < len(sentence) - 2 and sentence[long[1] + 1] == '(' and 'short' in labels[
                long[1] + 2]:
                for short in shorts:
                    if short[0] == long[1] + 2:
                        best_short = short
                        break
            if not best_short and long[0] > 1 and sentence[long[0] - 1] == '(' and 'short' in labels[long[0] - 2]:
                for short in shorts:
                    if short[1] == long[0] - 2:
                        best_short = short
                        break
            ####
            if not best_short:
                for short in shorts:
                    if short[0] > long[1]:
                        dist = short[0] - long[1]
                    else:
                        dist = long[0] - short[1]
                    if dist < best_dist:
                        best_dist = dist
                        best_short = short
            if best_short:
                short_form_info = ' '.join(sentence[best_short[0]:best_short[1] + 1])
                long_form_info = [' '.join(sentence[long[0]:long[1] + 1]), best_short, [long[0], long[1]], tag, 1]
                if short_form_info in acr_long:
                    long_form_info[4] += 1
                acr_long[short_form_info] = long_form_info
        if all_acronyms:
            for short in shorts:
                acr = ' '.join(sentence[short[0]:short[1] + 1])
                if acr not in acr_long:
                    acr_long[acr] = ['', short, [], tag, 1]
        return acr_long

    #### FIXED [QALD-6 (the workshop of question answering over linked-data 6) at ESWIC 2016]
    def map_chars(self, acronym, long):
        '''
        This function evaluate the long for based on number of initials overlapping with the acronym and if it is above a threshold it assigns the long form the the acronym

        :param acronym:
        :param long:
        :return:
        '''
        capitals = []
        for c in acronym:
            if c.isupper():
                capitals.append(c.lower())
        initials = [w[0].lower() for w in long]
        ratio = len([c for c in initials if c in capitals]) / len(initials)
        if ratio >= 0.6:
            return long
        else:
            return None

    #### FIXED [issue: US Securities and Exchange Commission EDGAR ( SEC ) database]
    def map_chars_with_capitals(self, acronym, long):
        '''
        This function maps the acronym to the long-form which has the same initial capitals as the acronym

        :param acronym:
        :param long:
        :return:
        '''
        capitals = []
        for c in acronym:
            if c.isupper():
                capitals.append(c.lower())
        long_capital_initials = []
        for w in long:
            if w[0].isupper():
                long_capital_initials.append(w[0].lower())
        if len(capitals) == len(long_capital_initials) and all(
                capitals[i] == long_capital_initials[i] for i in range(len(capitals))):
            return True
        else:
            return False

    def schwartz_extract(self, sentence, shorts, remove_parentheses, ignore_hyphen=False, ignore_punc=False,
                         add_punc=False, small_window=False, no_stop_words=False, ignore_righthand=False,
                         map_chars=False,default_diction=False):
        labels = ['O'] * len(sentence)
        diction = {}
        for i, t in enumerate(sentence):
            if i in shorts:
                labels[i] = 'B-short'
                # FIXED [issue: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of ]
                if ignore_hyphen:
                    t = t.replace('-', '')
                # FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
                cand_long, cand_long_index, left = self.extract_cand_long(sentence, t, i, ignore_punc=ignore_punc,
                                                                          add_punc=add_punc, small_window=small_window)
                cand_long = ' '.join(cand_long)
                long_form = ""
                ## findBestLongForm
                if len(cand_long) > 0:
                    if left:
                        sIndex = len(t) - 1
                        lIndex = len(cand_long) - 1
                        while sIndex >= 0:
                            curChar = t[sIndex].lower()
                            if curChar.isdigit() or curChar.isalpha():
                                while (lIndex >= 0 and cand_long[lIndex].lower() != curChar) or (
                                        sIndex == 0 and lIndex > 0 and (
                                        cand_long[lIndex - 1].isdigit() or cand_long[lIndex - 1].isalpha())):
                                    lIndex -= 1
                                if lIndex < 0:
                                    break
                                lIndex -= 1
                            sIndex -= 1
                        if lIndex >= -1:
                            try:
                                lIndex = cand_long.rindex(" ", 0, lIndex + 1) + 1
                            except:
                                lIndex = 0
                            if cand_long:
                                cand_long = cand_long[lIndex:]
                                long_form = cand_long
                    else:
                        sIndex = 0
                        lIndex = 0
                        if t[0].lower() == cand_long[0].lower() or ignore_righthand:
                            while sIndex < len(t):
                                curChar = t[sIndex].lower()
                                if curChar.isdigit() or curChar.isalpha():
                                    while (lIndex < len(cand_long) and cand_long[lIndex].lower() != curChar) or (
                                            ignore_righthand and (sIndex == 0 and lIndex > 0 and (
                                            cand_long[lIndex - 1].isdigit() or cand_long[lIndex - 1].isalpha()))) or (
                                            lIndex != 0 and cand_long[lIndex - 1] != ' ' and ' ' in cand_long[
                                                                                                    lIndex:] and
                                            cand_long[cand_long[lIndex:].index(' ') + lIndex + 1].lower() == curChar):
                                        lIndex += 1
                                        if lIndex >= len(cand_long):
                                            break
                                    if lIndex >= len(cand_long):
                                        break
                                    lIndex += 1
                                sIndex += 1
                            if lIndex < len(cand_long):
                                try:
                                    lIndex = cand_long[lIndex:].index(" ") + lIndex + 1
                                except:
                                    lIndex = len(cand_long)
                                if cand_long:
                                    cand_long = cand_long[:lIndex]
                                    long_form = cand_long
                    # FIXED [issue : 'good results on the product review ( CR ) and on the question - type ( TREC ) tasks']
                    if remove_parentheses:
                        if '(' in long_form or ')' in long_form:
                            long_form = ''
                    # FIXED [issue: TN: The Number of ]
                    long_form = long_form.split()
                    if no_stop_words and long_form:
                        if long_form[0].lower() in stop_words:
                            long_form = []
                    if long_form:
                        if left:
                            long_form_index = cand_long_index[-len(long_form):]
                        else:
                            long_form_index = cand_long_index[:len(long_form)]
                        first = True
                        for j in range(len(sentence)):
                            if j in long_form_index:
                                if first:
                                    labels[j] = 'B-long'
                                    first = False
                                else:
                                    labels[j] = 'I-long'
                        if default_diction:
                            diction[(long_form_index[0], long_form_index[-1])] = (i, i)
        return self.create_diction(sentence, labels, tag='Schwartz', map_chars=map_chars, diction=diction)

    def bounded_schwartz_extract(self, sentence, shorts, remove_parentheses, ignore_hyphen=False, ignore_punc=False,
                                 add_punc=False, small_window=False, no_stop_words=False, ignore_righthand=False,
                                 map_chars=False, high_recall=False, high_recall_left=False, tag='Bounded Schwartz',default_diction=False):
        '''
        This function uses the same rule as schwartz but for the format "long form (short form)" will select long forms that the last word in the long form is selected to form the acronym
        example: User - guided Social Media Crawling method ( USMC ) that

        :param remove_parentheses:
        :param sentence:
        :param shorts:
        :return:
        '''
        labels = ['O'] * len(sentence)
        diction = {}
        for i, t in enumerate(sentence):
            if i in shorts:
                labels[i] = 'B-short'
                # FIXED [issue: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of ]
                if ignore_hyphen:
                    t = t.replace('-', '')
                # FIXED [issue: The Stopping Trained in America PhDs from Leaving the Economy Act ( or STAPLE Act ) has bee introduced]
                if high_recall:
                    cand_long, cand_long_index, left = self.extract_high_recall_cand_long(sentence, t, i,
                                                                                          small_window=small_window,
                                                                                          left=high_recall_left)
                else:
                    # FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
                    cand_long, cand_long_index, left = self.extract_cand_long(sentence, t, i, ignore_punc=ignore_punc,
                                                                              add_punc=add_punc,
                                                                              small_window=small_window)
                cand_long = ' '.join(cand_long)
                long_form = ""
                ## findBestLongForm
                if len(cand_long) > 0:
                    if left:
                        sIndex = len(t) - 1
                        lIndex = len(cand_long) - 1
                        first_ind = len(cand_long)
                        while sIndex >= 0:
                            curChar = t[sIndex].lower()
                            if curChar.isdigit() or curChar.isalpha():
                                while (lIndex >= 0 and cand_long[lIndex].lower() != curChar) or (
                                        sIndex == 0 and lIndex > 0 and (
                                        cand_long[lIndex - 1].isdigit() or cand_long[lIndex - 1].isalpha())):
                                    lIndex -= 1
                                if first_ind == len(cand_long):
                                    first_ind = lIndex
                                if lIndex < 0:
                                    break
                                lIndex -= 1
                            sIndex -= 1
                        if lIndex >= 0 or lIndex == -1 and cand_long[0].lower() == t[0].lower():
                            try:
                                lIndex = cand_long.rindex(" ", 0, lIndex + 1) + 1
                                try:
                                    rIndex = cand_long[first_ind:].index(" ") + first_ind
                                except:
                                    rIndex = len(cand_long)
                            except:
                                lIndex = 0
                                try:
                                    rIndex = cand_long[first_ind:].index(" ") + first_ind
                                except:
                                    rIndex = len(cand_long)
                            if cand_long:
                                index_map = {}
                                word_ind = 0
                                for ind, c in enumerate(cand_long):
                                    if c == ' ':
                                        word_ind += 1
                                    index_map[ind] = word_ind
                                last_word_index = index_map[rIndex - 1]
                                cand_long = cand_long[lIndex:rIndex]
                                long_form = cand_long
                    else:
                        sIndex = 0
                        lIndex = 0
                        first_ind = -1
                        if t[0].lower() == cand_long[0].lower() or ignore_righthand:
                            while sIndex < len(t):
                                curChar = t[sIndex].lower()
                                if curChar.isdigit() or curChar.isalpha():
                                    while (lIndex < len(cand_long) and cand_long[lIndex].lower() != curChar) or (
                                            ignore_righthand and (sIndex == 0 and lIndex > 0 and (
                                            cand_long[lIndex - 1].isdigit() or cand_long[lIndex - 1].isalpha()))) or (
                                            lIndex != 0 and cand_long[lIndex - 1] != ' ' and ' ' in cand_long[
                                                                                                    lIndex:] and
                                            cand_long[cand_long[lIndex:].index(' ') + lIndex + 1].lower() == curChar):
                                        lIndex += 1
                                        if lIndex >= len(cand_long):
                                            break
                                    if first_ind == -1:
                                        first_ind = lIndex
                                    if lIndex >= len(cand_long):
                                        break
                                    lIndex += 1
                                sIndex += 1
                            if lIndex < len(cand_long) or (
                                    first_ind < len(cand_long) and lIndex == len(cand_long) and cand_long[-1] == t[-1]):
                                try:
                                    lIndex = cand_long[lIndex:].index(" ") + lIndex + 1
                                except:
                                    lIndex = len(cand_long)
                                if cand_long:
                                    if not ignore_righthand:
                                        first_ind = 0
                                    index_map = {}
                                    word_ind = 0
                                    for ind, c in enumerate(cand_long):
                                        if c == ' ':
                                            word_ind += 1
                                        index_map[ind] = word_ind
                                    first_word_index = index_map[first_ind]
                                    cand_long = cand_long[first_ind:lIndex]
                                    long_form = cand_long
                    # FIXED [issue : 'good results on the product review ( CR ) and on the question - type ( TREC ) tasks']
                    if remove_parentheses:
                        if '(' in long_form or ')' in long_form:
                            long_form = ''
                    # FIXED [issue: TN: The Number of ]
                    long_form = long_form.split()
                    if no_stop_words and long_form:
                        if long_form[0].lower() in stop_words:
                            long_form = []
                    if long_form:
                        if left:
                            long_form_index = cand_long_index[last_word_index - len(long_form) + 1:last_word_index + 1]
                        else:
                            long_form_index = cand_long_index[first_word_index:first_word_index + len(long_form)]
                        first = True
                        for j in range(len(sentence)):
                            if j in long_form_index:
                                if first:
                                    labels[j] = 'B-long'
                                    first = False
                                else:
                                    labels[j] = 'I-long'
                        if default_diction:
                            diction[(long_form_index[0],long_form_index[-1])] = (i,i)
        return self.create_diction(sentence, labels, tag=tag, map_chars=map_chars,diction=diction)

    # FIXED [issue: The Stopping Trained in America PhDs from Leaving the Economy Act ( or STAPLE Act ) has bee introduced]
    def high_recall_schwartz(self, sentence, shorts, remove_parentheses, ignore_hyphen=False, ignore_punc=False,
                             add_punc=False, small_window=False, no_stop_words=False, ignore_righthand=False,
                             map_chars=False):
        '''
        This function use bounded schwartz rules for acronyms which are not necessarily in parentheses
        example: The Stopping Trained in America PhDs from Leaving the Economy Act ( or STAPLE Act ) has bee introduced

        :param sentence:
        :param shorts:
        :param remove_parentheses:
        :param ignore_hyphen:
        :param ignore_punc:
        :param add_punc:
        :param small_window:
        :param no_stop_words:
        :param ignore_righthand:
        :param map_chars:
        :return:
        '''
        pairs_left = self.bounded_schwartz_extract(sentence, shorts, remove_parentheses, ignore_hyphen=True,
                                                   ignore_punc=ignore_punc, add_punc=add_punc,
                                                   small_window=small_window, no_stop_words=no_stop_words,
                                                   ignore_righthand=ignore_righthand, map_chars=True, high_recall=True,
                                                   high_recall_left=True, tag='High Recall Schwartz')
        pairs_right = self.bounded_schwartz_extract(sentence, shorts, remove_parentheses, ignore_hyphen=True,
                                                    ignore_punc=ignore_punc, add_punc=add_punc,
                                                    small_window=small_window, no_stop_words=no_stop_words,
                                                    ignore_righthand=ignore_righthand, map_chars=True, high_recall=True,
                                                    high_recall_left=False, tag='High Recall Schwartz')
        for acr, lf in pairs_right.items():
            if len(lf[0]) > 0 and (acr not in pairs_left or len(pairs_left[acr][0]) == 0):
                pairs_left[acr] = lf
        res = {}
        for acr, lf in pairs_left.items():
            if acr == ''.join([w[0] for w in lf[0].split() if w[0].isupper()]) or acr.lower() == ''.join(
                    w[0] for w in lf[0].split() if w not in string.punctuation and w not in stop_words).lower():
                res[acr] = lf
        return res

    def character_match(self, acronym, long, long_index, left=False, output_string=False, is_candidate=True):
        capitals = []
        long_form = []
        for c in acronym:
            if c.isupper():
                capitals.append(c)
        # FIXED [issue: different modern GAN architectures : Deep Convolutional ( DC ) GAN , Spectral Normalization ( SN ) GAN , and Spectral Normalization GAN with Gradient Penalty ( SNGP ) .]
        if not is_candidate:
            long_capital_initials = []
            for w in long:
                if w[0].isupper():
                    long_capital_initials.append(w[0])
        ####
        if left:
            capitals = capitals[::-1]
            long = long[::-1]
            long_index = long_index[::-1]
        for j, c in enumerate(capitals):
            if j >= len(long):
                long_form = []
                break
            else:
                if long[j][0].lower() == c.lower():
                    long_form.append(long_index[j])
                else:
                    long_form = []
                    break
        # FIXED [issue: different modern GAN architectures : Deep Convolutional ( DC ) GAN , Spectral Normalization ( SN ) GAN , and Spectral Normalization GAN with Gradient Penalty ( SNGP ) .]
        if not is_candidate:
            if len(long_capital_initials) != len(long_form) and len(long_capital_initials) > 0:
                long_form = []
        ####
        long_form.sort()
        if output_string:
            if long_form:
                return long[long_form[0]:long_form[-1] + 1]
            else:
                return ""
        else:
            return long_form

    # FIXED [issue: annotation software application , Text Annotation Graphs , or TAG , that provides a rich set of]
    def high_recall_character_match(self, sentence, shorts, all_acronyms, ignore_hyphen=False, map_chars=False,default_diction=False):
        '''
        This function finds the long form of the acronyms that are not surrounded by parentheses in the text using scritc rule of character matching (the initial of the sequence of the words in the candidate long form should form the acronym)
        example: annotation software application , Text Annotation Graphs , or TAG , that provides a rich set of ...

        :param sentence:
        :param shorts:
        :param all_acronyms:
        :return:
        '''
        labels = ['O'] * len(sentence)
        diction = {}
        for i, t in enumerate(sentence):
            if i in shorts:
                labels[i] = 'B-short'
                # FIXED [issue: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of ]
                if ignore_hyphen:
                    t = t.replace('-', '')
                capitals = []
                for c in t:
                    if c.isupper():
                        capitals.append(c)
                cand_long = sentence[max(i - len(capitals) - 10, 0):i]
                long_form = ''
                long_form_index = []
                for j in range(max(len(cand_long) - len(capitals), 0)):
                    if ''.join(w[0] for w in cand_long[j:j + len(capitals)]) == t:
                        long_form = ' '.join(cand_long[j:j + len(capitals)])
                        long_form_index = list(range(max(max(i - len(capitals) - 10, 0) + j, 0),
                                                     max(max(i - len(capitals) - 10, 0) + j, 0) + len(capitals)))
                        break
                if not long_form:
                    cand_long = sentence[i + 1:len(capitals) + i + 10]
                    for j in range(max(len(cand_long) - len(capitals), 0)):
                        if ''.join(w[0] for w in cand_long[j:j + len(capitals)]) == t:
                            long_form = ' '.join(cand_long[j:j + len(capitals)])
                            long_form_index = list(range(i + 1 + j, i + j + len(capitals) + 1))
                            break
                long_form = long_form.split()
                if long_form:
                    if long_form[0] in stop_words or long_form[-1] in stop_words:
                        long_form = []
                    if any(lf in string.punctuation for lf in long_form):
                        long_form = []
                    if __name__ != "__main__":
                        NPs = [np.text for np in nlp(' '.join(sentence)).noun_chunks]
                        long_form_str = ' '.join(long_form)
                        if all(long_form_str not in np for np in NPs):
                            long_form = []
                if long_form:
                    for j in long_form_index:
                        labels[j] = 'I-long'
                    labels[long_form_index[0]] = 'B-long'
                    if default_diction:
                        diction[(long_form_index[0], long_form_index[-1])] = (i, i)
        return self.create_diction(sentence, labels, all_acronyms=all_acronyms, tag='high recall character match',
                                   map_chars=map_chars,diction=diction)

    def character_match_extract(self, sentence, shorts, all_acronyms, check_all_capitals=False, ignore_hyphen=False,
                                ignore_punc=False, map_chars=False,default_diction=False):
        labels = ['O'] * len(sentence)
        diction = {}
        for i, t in enumerate(sentence):
            if i in shorts:
                labels[i] = 'B-short'
                # FIXED [issue: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of ]
                if ignore_hyphen:
                    t = t.replace('-', '')
                # FIXED [issue: acronyms with lowercase letters, example:  of an enhanced Node B ( eNB )  ]
                if check_all_capitals:
                    if len(t) != len([c for c in t if c.isupper()]):
                        continue
                # FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
                cand_long, cand_long_index, left = self.extract_cand_long(sentence, t, i, ignore_punc=ignore_punc)
                long_form = []
                if cand_long:
                    long_form = self.character_match(t, cand_long, cand_long_index, left, is_candidate=True)
                if long_form:
                    labels[long_form[0]] = 'B-long'
                    for l in long_form[1:]:
                        labels[l] = 'I-long'
                    if default_diction:
                        diction[(long_form[0], long_form[-1])] = (i, i)
        return self.create_diction(sentence, labels, all_acronyms=all_acronyms, tag='character match',
                                   map_chars=map_chars, diction=diction)

    # FIXED [issue: roman numbers]
    def filterout_roman_numbers(self, diction):
        '''
        This function removes roman numbers from the list of extracted acronyms. It removes only numbers from 1 to 20.
        :param diction:
        :return:
        '''
        acronyms = set(diction.keys())
        for acr in acronyms:
            # instead of all roman acronyms we remove only 1 to 20:
            # if bool(re.search(r"^M{0,3}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$", acr)):
            if acr in ['I', 'II', 'III', 'IV', 'V', 'VI', 'VII', 'VIII', 'IX', 'X', 'XI', 'XII', 'XIII', 'XIV', 'XV',
                       'XVI', 'XVII', 'XVIII', 'XIX', 'XX']:
                del diction[acr]
        return diction

    # FIXED [issue: 'In International Semantic Web Conference , ( ISWC ) ,']
    def remove_punctuations(self, diction):
        '''
        Remove head+tailing punctuations

        :param diction:
        :return:
        '''

        for acr, info in diction.items():
            if len(info[0]) > 0:
                if info[0][0] in string.punctuation:
                    info[0] = info[0][2:]
                    info[2][0] = info[2][0] + 1
                    info[3] = 'remove punctuation'
            if len(info[0]) > 0:
                if info[0][-1] in string.punctuation:
                    info[0] = info[0][:-2]
                    info[2][1] = info[2][1] - 1
                    info[3] = 'remove punctuation'

        return diction

    # FIXED [issue: and Cantab Capital Institute for Mathematics of Information ( CCIMI )]
    def initial_capitals_extract(self, sentence, shorts, all_acronyms, ignore_hyphen=False, map_chars=False,default_diction=False):
        '''
        This function captures long form which their initials is capital and could form the acronym in the format "long form (acronym)" or "(acronym) long form"
        example:

        :param sentence:
        :param shorts:
        :param all_acronyms:
        :return:
        '''
        labels = ['O'] * len(sentence)
        diction = {}
        for i, t in enumerate(sentence):
            if i in shorts:
                labels[i] = 'B-short'
                # FIXED [issue: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of ]
                if ignore_hyphen:
                    t = t.replace('-', '')
                capitals = []
                for c in t:
                    if c.isupper():
                        capitals.append(c)
                cand_long, cand_long_index, left = self.extract_cand_long(sentence, t, i)
                capital_initials = []
                capital_initials_index = []
                for j, w in enumerate(cand_long):
                    lll = labels[i + j - len(cand_long) - 1]
                    if w[0].isupper() and labels[i + j - len(cand_long) - 1] == 'O':
                        capital_initials.append(w[0])
                        capital_initials_index.append(j)
                if ''.join(capital_initials) == t:
                    long_form = cand_long[capital_initials_index[0]:capital_initials_index[-1] + 1]
                    long_form_index = cand_long_index[capital_initials_index[0]:capital_initials_index[-1] + 1]
                    for lfi in long_form_index:
                        labels[lfi] = 'I-long'
                    labels[long_form_index[0]] = 'B-long'
                    if default_diction:
                        diction[(long_form_index[0], long_form_index[-1])] = (i, i)
        return self.create_diction(sentence, labels, all_acronyms=all_acronyms, tag='Capital Initials',
                                   map_chars=map_chars,diction=diction)

    # FIXED [issue: for C - GAN indicates ]
    def hyphen_in_acronym(self, sentence, shorts):
        '''
        This function merge two acronyms if there is a hyphen between them
        example: for C - GAN indicates

        :param sentence:
        :param shorts:
        :return:
        '''

        new_shorts = []
        for short in shorts:
            i = short + 1
            next_hyphen = False
            while i < len(sentence) and sentence[i] == '-':
                next_hyphen = True
                i += 1
            j = short - 1
            before_hyphen = False
            while j > 0 and sentence[j] == '-':
                before_hyphen = True
                j -= 1
            # FIXED [check length of the new acronym. issue: SPG - GCN)In Table]
            # if i < len(sentence) and sentence[i].isupper() and len(sentence[i]) <= 2:
            if i < len(sentence) and sentence[i].isupper() and next_hyphen:
                for ind in range(short + 1, i + 1):
                    new_shorts += [ind]
            # FIXED [check length of the new acronym. issue: SPG - GCN)In Table]
            # if j > -1 and sentence[j].isupper() and len(sentence[j]) <= 2:
            if j > -1 and sentence[j].isupper() and before_hyphen:
                for ind in range(j, short):
                    new_shorts += [ind]

        shorts.extend(new_shorts)
        return shorts

    # FIXED [issue: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of ]
    def merge_hyphened_acronyms(self, sentence, labels=[]):
        '''
        This function merge hyphened acronyms
        example: We show that stochastic gradient Markov chain Monte Carlo ( SG - MCMC ) - a class of

        :param sentence:
        :return:
        '''
        new_sentence = []
        new_labels = []
        merge = False
        shorts = self.short_extract(sentence, 0.6, True)
        shorts += self.hyphen_in_acronym(sentence, shorts)

        for i, t in enumerate(sentence):
            if i in shorts and i - 1 in shorts and i + 1 in shorts and t == '-':
                merge = True
                if len(new_sentence) > 0:
                    new_sentence[-1] += '-'
                else:
                    new_sentence += ['-']
                continue
            if merge:
                if len(new_sentence) > 0:
                    new_sentence[-1] += t
                else:
                    new_sentence += [t]
            else:
                new_sentence.append(t)
                if labels:
                    new_labels.append(labels[i])
            merge = False

        return new_sentence, new_labels

    # FIXED [issue: we use encoder RNN ( ER )]
    def add_embedded_acronym(self, diction, shorts, sentence):
        '''
        This function will add the embeded acronyms into the dictionary
        example: we use encoder RNN ( ER )

        :param diction:
        :param shorts:
        :return:
        '''
        short_captured = []
        long_captured = []
        for acr, info in diction.items():
            short_captured.append(info[1][0])
            if info[2]:
                long_captured.extend(list(range(info[2][0], info[2][1])))
        for short in shorts:
            if short not in short_captured and short in long_captured and sentence[short] not in diction:
                diction[sentence[short]] = ['', (short, short), [], 'embedded acronym']
        return diction

    # FIXED [issue: acronym stands for template]
    def extract_templates(self, sentence, shorts, map_chars=False):
        '''
        Extract acronym and long forms based on templates
        example: PM stands for Product Manager

        :param sentence:
        :param shorts:
        :return:
        '''
        labels = ['O'] * len(sentence)
        for i, t in enumerate(sentence):
            if i in shorts:
                labels[i] = 'B-short'
                capitals = []
                for c in t:
                    if c.isupper():
                        capitals.append(c)
                if i < len(sentence) - len(capitals) - 2:
                    if sentence[i + 1] == 'stands' and sentence[i + 2] == 'for':
                        if ''.join(w[0] for w in sentence[i + 3:i + 3 + len(capitals)]) == ''.join(capitals):
                            labels[i + 3:i + 3 + len(capitals)] = ['I-long'] * len(capitals)
                            labels[i + 3] = 'B-long'
        return self.create_diction(sentence, labels, all_acronyms=False, tag='Template', map_chars=map_chars)

    # FIXED [issue: preserve number of meanins extracted from other method]
    def update_pair(self, old_pair, new_pair):
        for acr, info in new_pair.items():
            if acr not in old_pair:
                old_pair[acr] = info
            else:
                info[4] = max(info[4],old_pair[acr][4])
                old_pair[acr] = info
        return old_pair

    def extract(self, sentence, active_rules):
        # FIXED [issue: of an enhanced Node B ( eNB ) ]
        shorts = self.short_extract(sentence, 0.6, active_rules['starting_lower_case'],
                                    ignore_dot=active_rules['ignore_dot'])
        # FIXED [issue: acronyms like StESs]
        if active_rules['low_short_threshold']:
            shorts += self.short_extract(sentence, 0.50, active_rules['starting_lower_case'],
                                         ignore_dot=active_rules['ignore_dot'])
        ####
        # FIXED [issue: for C - GAN indicates ]
        if active_rules['hyphen_in_acronym']:
            shorts += self.hyphen_in_acronym(sentence, shorts)
        ####
        pairs = {}
        if active_rules['schwartz']:
            # FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
            pairs = self.schwartz_extract(sentence, shorts, active_rules['no_parentheses'],
                                          ignore_punc=active_rules['ignore_punc_in_parentheses'],
                                          add_punc=active_rules['extend_punc'],
                                          small_window=active_rules['small_window'],
                                          no_stop_words=active_rules['no_beginning_stop_word'],
                                          ignore_righthand=active_rules['ignore_right_hand'],
                                          map_chars=active_rules['map_chars'],
                                          default_diction=active_rules['default_diction'])
        # FIXED [issue: 'User - guided Social Media Crawling method ( USMC ) that']
        if active_rules['bounded_schwartz']:
            # FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
            bounded_pairs = self.bounded_schwartz_extract(sentence, shorts, active_rules['no_parentheses'],
                                                          ignore_punc=active_rules['ignore_punc_in_parentheses'],
                                                          add_punc=active_rules['extend_punc'],
                                                          small_window=active_rules['small_window'],
                                                          no_stop_words=active_rules['no_beginning_stop_word'],
                                                          ignore_righthand=active_rules['ignore_right_hand'],
                                                          map_chars=active_rules['map_chars'],
                                                          default_diction=active_rules['default_diction'])
            # pairs.update(bounded_pairs)
            pairs = self.update_pair(pairs, bounded_pairs)
        # FIXED [issue: The Stopping Trained in America PhDs from Leaving the Economy Act ( or STAPLE Act ) has bee introduced]
        if active_rules['high_recall_schwartz']:
            hr_paris = self.high_recall_schwartz(sentence, shorts, active_rules['no_parentheses'],
                                                 ignore_punc=active_rules['ignore_punc_in_parentheses'],
                                                 add_punc=active_rules['extend_punc'],
                                                 small_window=active_rules['small_window'],
                                                 no_stop_words=active_rules['no_beginning_stop_word'],
                                                 ignore_righthand=active_rules['ignore_right_hand'],
                                                 map_chars=active_rules['map_chars'],
                                                 default_diction=active_rules['default_diction'])
            # pairs.update(hr_paris)
            pairs = self.update_pair(pairs,hr_paris)
        if active_rules['character']:
            # FIXED [issue: acronyms with lowercase letters, example: of an enhanced Node B ( eNB )  ]
            # FIXED [issue: such as Latent Semantic Analysis ( LSA ; )]
            character_pairs = self.character_match_extract(sentence, shorts, not active_rules['schwartz'],
                                                           check_all_capitals=active_rules['check_all_capitals'],
                                                           ignore_punc=active_rules['ignore_punc_in_parentheses'],
                                                           map_chars=active_rules['map_chars'],
                                                           default_diction=active_rules['default_diction'])
            # pairs.update(character_pairs)
            pairs = self.update_pair(pairs, character_pairs)
        # FIXED [issue: annotation software application , Text Annotation Graphs , or TAG , that provides a rich set of]
        if active_rules['high_recall_character_match']:
            character_pairs = self.high_recall_character_match(sentence, shorts, not active_rules['schwartz'],
                                                               map_chars=active_rules['map_chars'],default_diction=active_rules['default_diction'])
            acronyms = character_pairs.keys()
            for acr in acronyms:
                if acr not in pairs or len(pairs[acr][0]) == 0:
                    pairs[acr] = character_pairs[acr]
        # FIXED [issue: and Cantab Capital Institute for Mathematics of Information ( CCIMI )]
        if active_rules['initial_capitals']:
            character_pairs = self.initial_capitals_extract(sentence, shorts, not active_rules['schwartz'],
                                                            map_chars=active_rules['map_chars'],default_diction=active_rules['default_diction'])
            # pairs.update(character_pairs)
            pairs = self.update_pair(pairs,character_pairs)
        # FIXED [issue: acronym stands for long form]
        if active_rules['template']:
            template_pairs = self.extract_templates(sentence, shorts, map_chars=active_rules['map_chars'])
            # pairs.update(template_pairs)
            pairs = self.update_pair(pairs,template_pairs)
        # FIXED [issue: we use encoder RNN ( ER )]
        if active_rules['capture_embedded_acronym']:
            pairs = self.add_embedded_acronym(pairs, shorts, sentence)
        # FIXED [issue: roman numbers]
        if active_rules['roman']:
            pairs = self.filterout_roman_numbers(pairs)
        # FIXED [issue: 'In International Semantic Web Conference , ( ISWC ) ,']
        if active_rules['remove_punctuation']:
            pairs = self.remove_punctuations(pairs)
        return pairs

        failures = []
        sucess = []
        for i in range(len(gold_label)):
            gold_diction = self.create_diction(dataset[i]['token'], gold_label[i], tag='gold')
            pred_diction = pred_dictions[i]
            if gold_diction.keys() != pred_diction.keys() or set(v[0] for v in gold_diction.values()) != set(
                    v[0] for v in pred_diction.values()):
                failures.append([gold_diction, pred_diction, dataset[i]['token'], dataset[i]['id']])
            else:
                sucess.append([gold_diction, pred_diction, dataset[i]['token'], dataset[i]['id']])
        failure_ratio = 'Failures: {:.2%}'.format(len(failures) / len(dataset)) + '\n'
        print(failure_ratio)
        results += failure_ratio
        return failures, sucess, results