|
from llama_cpp import * |
|
from ctypes import POINTER, c_size_t |
|
from llama_cpp._internals import ( |
|
_LlamaModel, |
|
_LlamaContext, |
|
_LlamaBatch, |
|
_LlamaTokenDataArray, |
|
) |
|
|
|
from KMP_list import kmp_search, compute_lps_array |
|
from Turbo_Colormap import map_value_to_color, NOCOLOR, LEGEND, BACK_WHITE |
|
|
|
|
|
class LLMGenerate: |
|
def __init__( |
|
self, |
|
model, |
|
n_keep, |
|
n_discard: int = 256, |
|
im_start=None, |
|
top_k: int = 40, |
|
top_p: float = 0.95, |
|
min_p: float = 0.05, |
|
typical_p: float = 1.0, |
|
temp: float = 0.80, |
|
repeat_penalty: float = 1.1, |
|
repeat_last_n: int = 64, |
|
frequency_penalty: float = 0.0, |
|
presence_penalty: float = 0.0, |
|
tfs_z: float = 1.0, |
|
mirostat_mode: int = 0, |
|
mirostat_tau: float = 5.0, |
|
mirostat_eta: float = 0.1 |
|
): |
|
def _eval_t(tokens): |
|
return model.eval_t( |
|
tokens=tokens, |
|
n_keep=n_keep, |
|
n_discard=n_discard, |
|
im_start=im_start |
|
) |
|
|
|
def _sample_t(logits_processor): |
|
return model.sample_t( |
|
top_k=top_k, |
|
top_p=top_p, |
|
min_p=min_p, |
|
typical_p=typical_p, |
|
temp=temp, |
|
repeat_penalty=repeat_penalty, |
|
repeat_last_n=repeat_last_n, |
|
frequency_penalty=frequency_penalty, |
|
presence_penalty=presence_penalty, |
|
tfs_z=tfs_z, |
|
mirostat_mode=mirostat_mode, |
|
mirostat_tau=mirostat_tau, |
|
mirostat_eta=mirostat_eta, |
|
logits_processor=logits_processor |
|
) |
|
|
|
self._eval_t = _eval_t |
|
self._sample_t = _sample_t |
|
self.str_detokenize = model.str_detokenize |
|
self.venv_pop_token = model.venv_pop_token |
|
|
|
self.t_bot = [] |
|
self.completion_tokens = [] |
|
self.history = '' |
|
self.token = None |
|
|
|
def eval_t(self, tokens): |
|
|
|
self.completion_tokens.extend(tokens) |
|
all_text = self.str_detokenize(self.completion_tokens) |
|
if all_text: |
|
self.t_bot.extend(self.completion_tokens) |
|
self.history += all_text |
|
self.completion_tokens = [] |
|
return self._eval_t(tokens) |
|
|
|
def sample_t(self, logits_processor): |
|
self.token = self._sample_t(logits_processor) |
|
return self.token |
|
|
|
def detokenize_sample_t(self): |
|
self.completion_tokens.append(self.token) |
|
all_text = self.str_detokenize(self.completion_tokens) |
|
if not all_text: |
|
return False |
|
self.t_bot.extend(self.completion_tokens) |
|
self.history += all_text |
|
self.completion_tokens = [] |
|
return True |
|
|
|
def eval_sample_t(self): |
|
return self._eval_t([self.token]) |
|
|
|
def endswith_t(self, token_list): |
|
return self.token in token_list |
|
|
|
def endswith_s(self, start_func, str_list, com_func=str.rstrip): |
|
if self.completion_tokens: |
|
return False |
|
|
|
history = self.history |
|
t_bot = self.t_bot |
|
|
|
if start_func(history): |
|
history = com_func(history) |
|
for x in str_list: |
|
if history.endswith(x): |
|
n = len(t_bot) |
|
for i in range(1, n): |
|
tmp = self.str_detokenize(t_bot[n - i:]) |
|
tmp = com_func(tmp) |
|
if tmp.endswith(x): |
|
if i > 1: |
|
self.venv_pop_token(i - 1) |
|
if history.endswith(tmp): |
|
self.history = history[:-len(tmp)] |
|
return True |
|
return False |
|
|
|
|
|
kv_cache_type = { |
|
'f32': 0, |
|
'f16': 1, |
|
'q8_0': 8, |
|
'q4_0': 2, |
|
'q4_1': 3, |
|
'iq4_nl': 20, |
|
'q5_0': 6, |
|
'q5_1': 7 |
|
} |
|
|
|
class StreamingLLM(Llama): |
|
|
|
__backend_initialized = False |
|
|
|
def __init__( |
|
self, |
|
model_path: str, |
|
*, |
|
|
|
n_gpu_layers: int = 0, |
|
split_mode: int = llama_cpp.LLAMA_SPLIT_MODE_LAYER, |
|
main_gpu: int = 0, |
|
tensor_split: Optional[List[float]] = None, |
|
vocab_only: bool = False, |
|
use_mmap: bool = True, |
|
use_mlock: bool = False, |
|
kv_overrides: Optional[Dict[str, Union[bool, int, float]]] = None, |
|
|
|
seed: int = llama_cpp.LLAMA_DEFAULT_SEED, |
|
n_ctx: int = 512, |
|
n_batch: int = 512, |
|
n_threads: Optional[int] = None, |
|
n_threads_batch: Optional[int] = None, |
|
rope_scaling_type: Optional[int] = llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, |
|
pooling_type: int = llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED, |
|
rope_freq_base: float = 0.0, |
|
rope_freq_scale: float = 0.0, |
|
yarn_ext_factor: float = -1.0, |
|
yarn_attn_factor: float = 1.0, |
|
yarn_beta_fast: float = 32.0, |
|
yarn_beta_slow: float = 1.0, |
|
yarn_orig_ctx: int = 0, |
|
logits_all: bool = False, |
|
embedding: bool = False, |
|
offload_kqv: bool = True, |
|
|
|
last_n_tokens_size: int = 64, |
|
|
|
lora_base: Optional[str] = None, |
|
lora_scale: float = 1.0, |
|
lora_path: Optional[str] = None, |
|
|
|
numa: Union[bool, int] = False, |
|
|
|
chat_format: Optional[str] = None, |
|
chat_handler: Optional[llama_chat_format.LlamaChatCompletionHandler] = None, |
|
|
|
draft_model: Optional[LlamaDraftModel] = None, |
|
|
|
tokenizer: Optional[BaseLlamaTokenizer] = None, |
|
|
|
verbose: bool = True, |
|
|
|
type_k: str = 'f16', |
|
type_v: str = 'f16', |
|
**kwargs, |
|
): |
|
"""Load a llama.cpp model from `model_path`. |
|
|
|
Examples: |
|
Basic usage |
|
|
|
>>> import llama_cpp |
|
>>> model = llama_cpp.Llama( |
|
... model_path="path/to/model", |
|
... ) |
|
>>> print(model("The quick brown fox jumps ", stop=["."])["choices"][0]["text"]) |
|
the lazy dog |
|
|
|
Loading a chat model |
|
|
|
>>> import llama_cpp |
|
>>> model = llama_cpp.Llama( |
|
... model_path="path/to/model", |
|
... chat_format="llama-2", |
|
... ) |
|
>>> print(model.create_chat_completion( |
|
... messages=[{ |
|
... "role": "user", |
|
... "content": "what is the meaning of life?" |
|
... }] |
|
... )) |
|
|
|
Args: |
|
model_path: Path to the model. |
|
n_gpu_layers: Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded. |
|
split_mode: How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options. |
|
main_gpu: main_gpu interpretation depends on split_mode: LLAMA_SPLIT_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_LAYER: ignored |
|
tensor_split: How split tensors should be distributed across GPUs. If None, the model is not split. |
|
vocab_only: Only load the vocabulary no weights. |
|
use_mmap: Use mmap if possible. |
|
use_mlock: Force the system to keep the model in RAM. |
|
kv_overrides: Key-value overrides for the model. |
|
seed: RNG seed, -1 for random |
|
n_ctx: Text context, 0 = from model |
|
n_batch: Prompt processing maximum batch size |
|
n_threads: Number of threads to use for generation |
|
n_threads_batch: Number of threads to use for batch processing |
|
rope_scaling_type: RoPE scaling type, from `enum llama_rope_scaling_type`. ref: https://github.com/ggerganov/llama.cpp/pull/2054 |
|
pooling_type: Pooling type, from `enum llama_pooling_type`. |
|
rope_freq_base: RoPE base frequency, 0 = from model |
|
rope_freq_scale: RoPE frequency scaling factor, 0 = from model |
|
yarn_ext_factor: YaRN extrapolation mix factor, negative = from model |
|
yarn_attn_factor: YaRN magnitude scaling factor |
|
yarn_beta_fast: YaRN low correction dim |
|
yarn_beta_slow: YaRN high correction dim |
|
yarn_orig_ctx: YaRN original context size |
|
logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs. |
|
embedding: Embedding mode only. |
|
offload_kqv: Offload K, Q, V to GPU. |
|
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque. |
|
lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model. |
|
lora_path: Path to a LoRA file to apply to the model. |
|
numa: numa policy |
|
chat_format: String specifying the chat format to use when calling create_chat_completion. |
|
chat_handler: Optional chat handler to use when calling create_chat_completion. |
|
draft_model: Optional draft model to use for speculative decoding. |
|
tokenizer: Optional tokenizer to override the default tokenizer from llama.cpp. |
|
verbose: Print verbose output to stderr. |
|
|
|
Raises: |
|
ValueError: If the model path does not exist. |
|
|
|
Returns: |
|
A Llama instance. |
|
""" |
|
self.verbose = verbose |
|
|
|
set_verbose(verbose) |
|
|
|
if not StreamingLLM.__backend_initialized: |
|
with suppress_stdout_stderr(disable=verbose): |
|
llama_cpp.llama_backend_init() |
|
StreamingLLM.__backend_initialized = True |
|
|
|
if isinstance(numa, bool): |
|
self.numa = ( |
|
llama_cpp.GGML_NUMA_STRATEGY_DISTRIBUTE |
|
if numa |
|
else llama_cpp.GGML_NUMA_STRATEGY_DISABLED |
|
) |
|
else: |
|
self.numa = numa |
|
|
|
if self.numa != llama_cpp.GGML_NUMA_STRATEGY_DISABLED: |
|
with suppress_stdout_stderr(disable=verbose): |
|
llama_cpp.llama_numa_init(self.numa) |
|
|
|
self.model_path = model_path |
|
|
|
|
|
self.model_params = llama_cpp.llama_model_default_params() |
|
self.model_params.n_gpu_layers = ( |
|
0x7FFFFFFF if n_gpu_layers == -1 else n_gpu_layers |
|
) |
|
self.model_params.split_mode = split_mode |
|
self.model_params.main_gpu = main_gpu |
|
self.tensor_split = tensor_split |
|
self._c_tensor_split = None |
|
if self.tensor_split is not None: |
|
if len(self.tensor_split) > llama_cpp.LLAMA_MAX_DEVICES: |
|
raise ValueError( |
|
f"Attempt to split tensors that exceed maximum supported devices. Current LLAMA_MAX_DEVICES={llama_cpp.LLAMA_MAX_DEVICES}" |
|
) |
|
|
|
FloatArray = ctypes.c_float * llama_cpp.LLAMA_MAX_DEVICES |
|
self._c_tensor_split = FloatArray( |
|
*tensor_split |
|
) |
|
self.model_params.tensor_split = self._c_tensor_split |
|
self.model_params.vocab_only = vocab_only |
|
self.model_params.use_mmap = use_mmap if lora_path is None else False |
|
self.model_params.use_mlock = use_mlock |
|
|
|
|
|
self.kv_overrides = kv_overrides |
|
if kv_overrides is not None: |
|
|
|
kvo_array_len = len(kv_overrides) + 1 |
|
self._kv_overrides_array = ( |
|
llama_cpp.llama_model_kv_override * kvo_array_len |
|
)() |
|
|
|
for i, (k, v) in enumerate(kv_overrides.items()): |
|
self._kv_overrides_array[i].key = k.encode("utf-8") |
|
if isinstance(v, bool): |
|
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_BOOL |
|
self._kv_overrides_array[i].value.bool_value = v |
|
elif isinstance(v, int): |
|
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_INT |
|
self._kv_overrides_array[i].value.int_value = v |
|
elif isinstance(v, float): |
|
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_FLOAT |
|
self._kv_overrides_array[i].value.float_value = v |
|
else: |
|
raise ValueError(f"Unknown value type for {k}: {v}") |
|
|
|
self._kv_overrides_array[-1].key = ( |
|
b"\0" |
|
) |
|
self.model_params.kv_overrides = self._kv_overrides_array |
|
|
|
self.n_batch = min(n_ctx, n_batch) |
|
self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1) |
|
self.n_threads_batch = n_threads_batch or max( |
|
multiprocessing.cpu_count() // 2, 1 |
|
) |
|
|
|
|
|
self.context_params = llama_cpp.llama_context_default_params() |
|
self.context_params.seed = seed |
|
self.context_params.n_ctx = n_ctx |
|
self.context_params.n_batch = self.n_batch |
|
self.context_params.n_threads = self.n_threads |
|
self.context_params.n_threads_batch = self.n_threads_batch |
|
self.context_params.rope_scaling_type = ( |
|
rope_scaling_type |
|
if rope_scaling_type is not None |
|
else llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED |
|
) |
|
self.context_params.pooling_type = pooling_type |
|
self.context_params.rope_freq_base = ( |
|
rope_freq_base if rope_freq_base != 0.0 else 0 |
|
) |
|
self.context_params.rope_freq_scale = ( |
|
rope_freq_scale if rope_freq_scale != 0.0 else 0 |
|
) |
|
self.context_params.yarn_ext_factor = ( |
|
yarn_ext_factor if yarn_ext_factor != 0.0 else 0 |
|
) |
|
self.context_params.yarn_attn_factor = ( |
|
yarn_attn_factor if yarn_attn_factor != 0.0 else 0 |
|
) |
|
self.context_params.yarn_beta_fast = ( |
|
yarn_beta_fast if yarn_beta_fast != 0.0 else 0 |
|
) |
|
self.context_params.yarn_beta_slow = ( |
|
yarn_beta_slow if yarn_beta_slow != 0.0 else 0 |
|
) |
|
self.context_params.yarn_orig_ctx = yarn_orig_ctx if yarn_orig_ctx != 0 else 0 |
|
self.context_params.logits_all = ( |
|
logits_all if draft_model is None else True |
|
) |
|
self.context_params.embeddings = embedding |
|
|
|
|
|
print(self.context_params.type_k, self.context_params.type_v) |
|
self.context_params.type_k = kv_cache_type[type_k] |
|
self.context_params.type_v = kv_cache_type[type_v] |
|
|
|
self.context_params.offload_kqv = offload_kqv |
|
|
|
|
|
self.last_n_tokens_size = last_n_tokens_size |
|
|
|
self.cache: Optional[BaseLlamaCache] = None |
|
|
|
self.lora_base = lora_base |
|
self.lora_scale = lora_scale |
|
self.lora_path = lora_path |
|
|
|
if not os.path.exists(model_path): |
|
raise ValueError(f"Model path does not exist: {model_path}") |
|
|
|
self._model = _LlamaModel( |
|
path_model=self.model_path, params=self.model_params, verbose=self.verbose |
|
) |
|
|
|
|
|
self.tokenizer_ = tokenizer or LlamaTokenizer(self) |
|
|
|
|
|
if n_ctx == 0: |
|
n_ctx = self._model.n_ctx_train() |
|
self.n_batch = min(n_ctx, n_batch) |
|
self.context_params.n_ctx = self._model.n_ctx_train() |
|
self.context_params.n_batch = self.n_batch |
|
|
|
self._ctx = _LlamaContext( |
|
model=self._model, |
|
params=self.context_params, |
|
verbose=self.verbose, |
|
) |
|
|
|
self._batch = _LlamaBatch( |
|
n_tokens=self.n_batch, |
|
embd=0, |
|
n_seq_max=self.context_params.n_ctx, |
|
verbose=self.verbose, |
|
) |
|
|
|
if self.lora_path: |
|
if self._model.apply_lora_from_file( |
|
self.lora_path, |
|
self.lora_scale, |
|
self.lora_base, |
|
self.n_threads, |
|
): |
|
raise RuntimeError( |
|
f"Failed to apply LoRA from lora path: {self.lora_path} to base path: {self.lora_base}" |
|
) |
|
|
|
if self.verbose: |
|
print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr) |
|
|
|
self.chat_format = chat_format |
|
self.chat_handler = chat_handler |
|
|
|
self.draft_model = draft_model |
|
|
|
self._n_vocab = self.n_vocab() |
|
self._n_ctx = self.n_ctx() |
|
|
|
self._token_nl = self.token_nl() |
|
self._token_eos = self.token_eos() |
|
|
|
self._candidates = _LlamaTokenDataArray(n_vocab=self._n_vocab) |
|
|
|
self.n_tokens = 0 |
|
self.input_ids: npt.NDArray[np.intc] = np.ndarray((n_ctx,), dtype=np.intc) |
|
self.scores: npt.NDArray[np.single] = np.ndarray( |
|
(n_ctx, self._n_vocab), dtype=np.single |
|
) |
|
|
|
self._mirostat_mu = ctypes.c_float( |
|
2.0 * 5.0 |
|
) |
|
|
|
try: |
|
self.metadata = self._model.metadata() |
|
except Exception as e: |
|
self.metadata = {} |
|
if self.verbose: |
|
print(f"Failed to load metadata: {e}", file=sys.stderr) |
|
|
|
if self.verbose: |
|
print(f"Model metadata: {self.metadata}", file=sys.stderr) |
|
|
|
if ( |
|
self.chat_format is None |
|
and self.chat_handler is None |
|
and "tokenizer.chat_template" in self.metadata |
|
): |
|
chat_format = llama_chat_format.guess_chat_format_from_gguf_metadata( |
|
self.metadata |
|
) |
|
|
|
if chat_format is not None: |
|
self.chat_format = chat_format |
|
if self.verbose: |
|
print(f"Guessed chat format: {chat_format}", file=sys.stderr) |
|
else: |
|
template = self.metadata["tokenizer.chat_template"] |
|
try: |
|
eos_token_id = int(self.metadata["tokenizer.ggml.eos_token_id"]) |
|
except: |
|
eos_token_id = self.token_eos() |
|
try: |
|
bos_token_id = int(self.metadata["tokenizer.ggml.bos_token_id"]) |
|
except: |
|
bos_token_id = self.token_bos() |
|
|
|
eos_token = self._model.token_get_text(eos_token_id) |
|
bos_token = self._model.token_get_text(bos_token_id) |
|
|
|
if self.verbose: |
|
print(f"Using gguf chat template: {template}", file=sys.stderr) |
|
print(f"Using chat eos_token: {eos_token}", file=sys.stderr) |
|
print(f"Using chat bos_token: {bos_token}", file=sys.stderr) |
|
|
|
self.chat_handler = llama_chat_format.Jinja2ChatFormatter( |
|
template=template, eos_token=eos_token, bos_token=bos_token |
|
).to_chat_handler() |
|
|
|
if self.chat_format is None and self.chat_handler is None: |
|
self.chat_format = "llama-2" |
|
if self.verbose: |
|
print(f"Using fallback chat format: {chat_format}", file=sys.stderr) |
|
self._venv_init() |
|
|
|
def str_detokenize(self, tokens) -> str: |
|
return self.detokenize(tokens).decode('utf-8', errors='ignore') |
|
|
|
def kv_cache_seq_trim(self): |
|
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1) |
|
|
|
def _venv_init(self): |
|
self.venv = [0] |
|
self.venv_idx_map = [] |
|
|
|
def venv_create(self, name: str): |
|
self.venv.append(0) |
|
self.venv_idx_map.append(name) |
|
return name |
|
|
|
def venv_disband(self, name_set): |
|
if len(self.venv) <= 1: |
|
return False |
|
name_set = {x for x in name_set if x in self.venv_idx_map} |
|
if not name_set: |
|
return False |
|
while self.venv_idx_map: |
|
if self.venv_idx_map[0] in name_set: |
|
self.venv_idx_map.pop(0) |
|
tmp = self.venv.pop(1) |
|
self.venv[0] += tmp |
|
else: |
|
break |
|
return True |
|
|
|
def venv_revision(self, name: str): |
|
if len(self.venv) <= 1: |
|
return False |
|
if name not in self.venv_idx_map: |
|
return False |
|
_s = 0 |
|
while self.venv_idx_map: |
|
if self.venv_idx_map[-1] == name: |
|
break |
|
self.venv_idx_map.pop() |
|
_s += self.venv.pop() |
|
if _s: |
|
self.n_tokens -= min(_s, self.n_tokens) |
|
self.kv_cache_seq_trim() |
|
return True |
|
|
|
def venv_remove(self, name: str, keep_last=0): |
|
if len(self.venv) <= 1: |
|
return False |
|
if name not in self.venv_idx_map: |
|
return False |
|
venv_idx = self.venv_idx_map.index(name) + 1 |
|
count_name = self.venv_idx_map.count(name) if keep_last else 0 |
|
while self.venv_idx_map: |
|
if keep_last and count_name <= keep_last: |
|
break |
|
self.venv_idx_map.pop(venv_idx - 1) |
|
if venv_idx == len(self.venv) - 1: |
|
|
|
self.n_tokens -= min(self.venv.pop(), self.n_tokens) |
|
self.kv_cache_seq_trim() |
|
break |
|
else: |
|
|
|
n_keep = self.n_tokens - sum(self.venv[i] for i in range(venv_idx, len(self.venv))) |
|
n_discard = self.venv.pop(venv_idx) |
|
self.kv_cache_seq_ltrim(n_keep, n_discard) |
|
try: |
|
venv_idx = self.venv_idx_map.index(name, venv_idx - 1) + 1 |
|
except ValueError: |
|
break |
|
count_name -= 1 |
|
return True |
|
|
|
def venv_pop_token(self, n=1): |
|
self.n_tokens -= n |
|
self.venv[-1] -= n |
|
self.kv_cache_seq_trim() |
|
|
|
@property |
|
def venv_info(self): |
|
return str((self.n_tokens, self.venv, self.venv_idx_map)) |
|
|
|
def venv_viz(self): |
|
completion_tokens = [] |
|
history = LEGEND + '\n' |
|
text_color = NOCOLOR |
|
for i in range(self.venv[-1]): |
|
idx = self.n_tokens - self.venv[-1] + i |
|
token = self._input_ids[idx] |
|
if not completion_tokens: |
|
|
|
score = self.scores[idx-1: idx, :].ravel() |
|
score = np.exp(score) |
|
sum_score = np.sum(score) |
|
probabilities = score[token] / sum_score |
|
if probabilities < 0.001: |
|
text_color = NOCOLOR |
|
else: |
|
if text_color is NOCOLOR: |
|
text_color = BACK_WHITE + map_value_to_color(probabilities) |
|
else: |
|
text_color = map_value_to_color(probabilities) |
|
history += text_color |
|
|
|
completion_tokens.append(token) |
|
all_text = self.str_detokenize(completion_tokens) |
|
if not all_text: |
|
continue |
|
completion_tokens = [] |
|
history += repr(all_text)[1:-1] |
|
return history + NOCOLOR |
|
|
|
def kv_cache_seq_ltrim(self, n_keep, n_discard=256, n_past=-1, im_start=None): |
|
if n_keep < 0: |
|
return |
|
if n_past < 0: |
|
n_past = self.n_tokens |
|
if im_start is not None: |
|
lps = compute_lps_array(im_start) |
|
_idx = kmp_search(self.input_ids, im_start, n_keep + n_discard, n_past, lps) |
|
if _idx >= n_keep: |
|
n_discard = _idx - n_keep |
|
else: |
|
_idx = kmp_search(self.input_ids, im_start, n_keep, n_past, lps) |
|
if _idx >= n_keep: |
|
n_keep = _idx + len(im_start) |
|
print(im_start, n_keep, n_discard, _idx) |
|
self._ctx.kv_cache_seq_rm(-1, n_keep, n_keep + n_discard) |
|
self._ctx.kv_cache_seq_shift(0, n_keep + n_discard, n_past, -n_discard) |
|
self.input_ids[n_keep:n_past - n_discard] = self.input_ids[n_keep + n_discard:n_past] |
|
self.n_tokens = n_past - n_discard |
|
|
|
def eval_t(self, tokens, n_keep=4, n_discard=256, im_start=None): |
|
if self._n_ctx < self.n_tokens + len(tokens): |
|
tmp_n_discard = max(n_discard, self.n_tokens + len(tokens) - self._n_ctx) |
|
self.kv_cache_seq_ltrim(n_keep, tmp_n_discard, im_start=im_start) |
|
for i in range(0, len(tokens), self.n_batch): |
|
batch = tokens[i: i + self.n_batch] |
|
n_past = self.n_tokens |
|
n_tokens = len(batch) |
|
self._batch.set_batch( |
|
batch=batch, n_past=n_past, logits_all=self.context_params.logits_all |
|
) |
|
self._ctx.decode(self._batch) |
|
|
|
self.input_ids[n_past: n_past + n_tokens] = batch |
|
|
|
rows = n_tokens |
|
cols = self._n_vocab |
|
offset = ( |
|
0 if self.context_params.logits_all else n_tokens - 1 |
|
) |
|
self.scores[n_past + offset: n_past + n_tokens, :].reshape(-1)[ |
|
: |
|
] = self._ctx.get_logits()[offset * cols: rows * cols] |
|
|
|
self.n_tokens += n_tokens |
|
self.venv[-1] += n_tokens |
|
return self.n_tokens |
|
|
|
def sample_t( |
|
self, |
|
top_k: int = 40, |
|
top_p: float = 0.95, |
|
min_p: float = 0.05, |
|
typical_p: float = 1.0, |
|
temp: float = 0.80, |
|
repeat_penalty: float = 1.1, |
|
repeat_last_n: int = 64, |
|
frequency_penalty: float = 0.0, |
|
presence_penalty: float = 0.0, |
|
tfs_z: float = 1.0, |
|
mirostat_mode: int = 0, |
|
mirostat_eta: float = 0.1, |
|
mirostat_tau: float = 5.0, |
|
penalize_nl: bool = True, |
|
logits_processor=None, |
|
grammar: Optional[LlamaGrammar] = None, |
|
): |
|
last_n_tokens_data = [llama_cpp.llama_token(0)] * max( |
|
0, repeat_last_n - self.n_tokens |
|
) + self._input_ids[-repeat_last_n:].tolist() |
|
last_n_tokens_size = len(last_n_tokens_data) |
|
n_vocab = self._n_vocab |
|
n_ctx = self._n_ctx |
|
top_k = n_vocab if top_k <= 0 else top_k |
|
last_n_tokens_size = n_ctx if last_n_tokens_size < 0 else last_n_tokens_size |
|
last_n_tokens_data_c = (llama_cpp.llama_token * last_n_tokens_size)( |
|
*last_n_tokens_data |
|
) |
|
logits: npt.NDArray[np.single] = self.scores[self.n_tokens - 1: self.n_tokens, :].ravel() |
|
|
|
if logits_processor is not None: |
|
logits[:] = logits_processor(self._input_ids, logits) |
|
|
|
self._candidates.copy_logits(logits) |
|
self._ctx.sample_repetition_penalties( |
|
candidates=self._candidates, |
|
last_tokens_data=last_n_tokens_data_c, |
|
penalty_last_n=last_n_tokens_size, |
|
penalty_repeat=repeat_penalty, |
|
penalty_freq=frequency_penalty, |
|
penalty_present=presence_penalty, |
|
) |
|
if not penalize_nl: |
|
nl_logit = logits[self._token_nl] |
|
self._candidates.candidates.data[self._token_nl].logit = llama_cpp.c_float( |
|
nl_logit |
|
) |
|
|
|
if grammar is not None: |
|
self._ctx.sample_grammar( |
|
candidates=self._candidates, |
|
grammar=grammar, |
|
) |
|
|
|
if temp < 0.0: |
|
self._ctx.sample_softmax(candidates=self._candidates) |
|
id_ = self._candidates.candidates.data[0].id |
|
elif temp == 0.0: |
|
id_ = self._ctx.sample_token_greedy(candidates=self._candidates) |
|
elif mirostat_mode == 1: |
|
self._ctx.sample_temp(candidates=self._candidates, temp=temp) |
|
id_ = self._ctx.sample_token_mirostat( |
|
candidates=self._candidates, |
|
tau=mirostat_tau, |
|
eta=mirostat_eta, |
|
mu=2.0 * mirostat_tau, |
|
m=100, |
|
) |
|
elif mirostat_mode == 2: |
|
self._ctx.sample_temp(candidates=self._candidates, temp=temp) |
|
id_ = self._ctx.sample_token_mirostat_v2( |
|
candidates=self._candidates, |
|
tau=mirostat_tau, |
|
eta=mirostat_eta, |
|
mu=2.0 * mirostat_tau, |
|
) |
|
else: |
|
self._ctx.sample_top_k(candidates=self._candidates, k=top_k, min_keep=1) |
|
self._ctx.sample_tail_free(candidates=self._candidates, z=tfs_z, min_keep=1) |
|
self._ctx.sample_typical( |
|
candidates=self._candidates, p=typical_p, min_keep=1 |
|
) |
|
self._ctx.sample_top_p(candidates=self._candidates, p=top_p, min_keep=1) |
|
self._ctx.sample_min_p(candidates=self._candidates, p=min_p, min_keep=1) |
|
self._ctx.sample_temp(candidates=self._candidates, temp=temp) |
|
id_ = self._ctx.sample_token(candidates=self._candidates) |
|
if grammar is not None: |
|
self._ctx.grammar_accept_token(grammar=grammar, token=id_) |
|
return id_ |
|
|
|
def generate_t( |
|
self, |
|
tokens: Sequence[int], |
|
n_keep, |
|
n_discard: int = 256, |
|
im_start=None, |
|
top_k: int = 40, |
|
top_p: float = 0.95, |
|
min_p: float = 0.05, |
|
typical_p: float = 1.0, |
|
temp: float = 0.80, |
|
repeat_penalty: float = 1.1, |
|
repeat_last_n: int = 64, |
|
frequency_penalty: float = 0.0, |
|
presence_penalty: float = 0.0, |
|
tfs_z: float = 1.0, |
|
mirostat_mode: int = 0, |
|
mirostat_tau: float = 5.0, |
|
mirostat_eta: float = 0.1, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
grammar: Optional[LlamaGrammar] = None, |
|
) -> Generator[int, Optional[Sequence[int]], None]: |
|
typical_p = float(typical_p) |
|
frequency_penalty = float(frequency_penalty) |
|
presence_penalty = float(presence_penalty) |
|
tfs_z = float(tfs_z) |
|
mirostat_tau = float(mirostat_tau) |
|
while True: |
|
self.eval_t(tokens, n_keep, n_discard, im_start=im_start) |
|
token = self.sample_t( |
|
top_k=top_k, |
|
top_p=top_p, |
|
min_p=min_p, |
|
typical_p=typical_p, |
|
temp=temp, |
|
repeat_penalty=repeat_penalty, |
|
repeat_last_n=repeat_last_n, |
|
frequency_penalty=frequency_penalty, |
|
presence_penalty=presence_penalty, |
|
tfs_z=tfs_z, |
|
mirostat_mode=mirostat_mode, |
|
mirostat_tau=mirostat_tau, |
|
mirostat_eta=mirostat_eta, |
|
logits_processor=logits_processor, |
|
grammar=grammar, |
|
) |
|
if stopping_criteria is not None and stopping_criteria( |
|
self._input_ids, self._scores[-1, :] |
|
): |
|
return |
|
tokens = yield token |
|
if tokens is None: |
|
tokens = [token] |
|
|
|
def load_session(self, filepath: str): |
|
n_tokens = POINTER(c_size_t)(c_size_t(0)) |
|
tokens = (llama_cpp.llama_token * self.n_ctx())() |
|
retn = llama_cpp.llama_load_session_file(self._ctx.ctx, |
|
filepath.encode('utf-8'), |
|
tokens, |
|
self.n_ctx(), |
|
n_tokens) |
|
self.n_tokens = n_tokens.contents.value |
|
self.input_ids[:self.n_tokens] = tokens[:self.n_tokens] |
|
self._venv_init() |
|
return retn |
|
|
|
def save_session(self, filepath: str): |
|
tokens = self._input_ids.tolist() |
|
tokens = (llama_cpp.llama_token * len(tokens))(*tokens) |
|
return llama_cpp.llama_save_session_file(self._ctx.ctx, filepath.encode('utf-8'), tokens, self.n_tokens) |
|
|