Upload 2 files
Browse files- KMP_list.py +55 -0
- llama_cpp_python_streamingllm.py +282 -0
KMP_list.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def compute_lps_array(sublist):
|
2 |
+
"""
|
3 |
+
计算模式串的最长前缀后缀匹配数组(LPS数组)
|
4 |
+
"""
|
5 |
+
lps = [0] * len(sublist)
|
6 |
+
j = 0
|
7 |
+
i = 1
|
8 |
+
while i < len(sublist):
|
9 |
+
if sublist[i] == sublist[j]:
|
10 |
+
j += 1
|
11 |
+
lps[i] = j
|
12 |
+
i += 1
|
13 |
+
else:
|
14 |
+
if j != 0:
|
15 |
+
j = lps[j - 1]
|
16 |
+
else:
|
17 |
+
lps[i] = 0
|
18 |
+
i += 1
|
19 |
+
return lps
|
20 |
+
|
21 |
+
|
22 |
+
def kmp_search(main_list, sublist, _start=0, _end=None, lps=None):
|
23 |
+
"""
|
24 |
+
使用KMP算法在列表上查找子串
|
25 |
+
"""
|
26 |
+
if not sublist:
|
27 |
+
return 0
|
28 |
+
if _end is None:
|
29 |
+
_end = len(main_list)
|
30 |
+
if lps is None:
|
31 |
+
lps = compute_lps_array(sublist)
|
32 |
+
i = _start # 指向主串的索引
|
33 |
+
j = 0 # 指向子串的索引
|
34 |
+
while i < _end:
|
35 |
+
if main_list[i] == sublist[j]:
|
36 |
+
i += 1
|
37 |
+
j += 1
|
38 |
+
if j == len(sublist):
|
39 |
+
return i - j
|
40 |
+
else:
|
41 |
+
if j != 0:
|
42 |
+
j = lps[j - 1]
|
43 |
+
else:
|
44 |
+
i += 1
|
45 |
+
return -1
|
46 |
+
|
47 |
+
|
48 |
+
if __name__ == '__main__':
|
49 |
+
a = [1, 1, 3, 2, 3, 6, 7, 8, 3, 2, 3]
|
50 |
+
b = [3, 2, 3]
|
51 |
+
c = compute_lps_array(b)
|
52 |
+
print(kmp_search(a, b, lps=c))
|
53 |
+
print(kmp_search(a, b, 3, lps=c))
|
54 |
+
print(kmp_search(a, b, 3, 10, lps=c))
|
55 |
+
print(kmp_search(a, b, 9, lps=c))
|
llama_cpp_python_streamingllm.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Sequence, Generator
|
2 |
+
|
3 |
+
from llama_cpp import Llama, LogitsProcessorList, LlamaGrammar, llama_cpp, npt, np, StoppingCriteriaList
|
4 |
+
from ctypes import POINTER
|
5 |
+
|
6 |
+
from KMP_list import kmp_search, compute_lps_array
|
7 |
+
|
8 |
+
|
9 |
+
def is_UTF8_incomplete(all_text):
|
10 |
+
multibyte_fix = 0
|
11 |
+
if len(all_text) < 3:
|
12 |
+
all_text = b'000' + all_text
|
13 |
+
for k, char in enumerate(all_text[-3:]):
|
14 |
+
k = 3 - k
|
15 |
+
for num, pattern in [(2, 192), (3, 224), (4, 240)]:
|
16 |
+
# Bitwise AND check
|
17 |
+
if num > k and pattern & char == pattern:
|
18 |
+
multibyte_fix = num - k
|
19 |
+
return multibyte_fix
|
20 |
+
|
21 |
+
|
22 |
+
def get_complete_UTF8(all_text):
|
23 |
+
multibyte_fix = is_UTF8_incomplete(all_text)
|
24 |
+
if multibyte_fix > 0:
|
25 |
+
multibyte_fix = multibyte_fix - 3
|
26 |
+
return all_text[:multibyte_fix].decode("utf-8")
|
27 |
+
else:
|
28 |
+
return all_text.decode("utf-8")
|
29 |
+
|
30 |
+
|
31 |
+
class StreamingLLM(Llama):
|
32 |
+
def __init__(self, model_path: str, **kwargs):
|
33 |
+
super().__init__(model_path, **kwargs)
|
34 |
+
self.venv = [0]
|
35 |
+
|
36 |
+
def str_detokenize(self, tokens) -> str:
|
37 |
+
return get_complete_UTF8(self.detokenize(tokens))
|
38 |
+
|
39 |
+
def kv_cache_seq_trim(self):
|
40 |
+
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
|
41 |
+
|
42 |
+
def venv_create(self):
|
43 |
+
self.venv.append(0)
|
44 |
+
return len(self.venv) - 1
|
45 |
+
|
46 |
+
def venv_disband(self):
|
47 |
+
if len(self.venv) <= 1:
|
48 |
+
return 0
|
49 |
+
tmp = self.venv.pop()
|
50 |
+
self.venv[-1] += tmp
|
51 |
+
return len(self.venv) - 1
|
52 |
+
|
53 |
+
def venv_remove(self, venv_idx=None):
|
54 |
+
if venv_idx is None:
|
55 |
+
venv_idx = len(self.venv) - 1
|
56 |
+
if venv_idx <= 0 or venv_idx >= len(self.venv):
|
57 |
+
return len(self.venv) - 1
|
58 |
+
if venv_idx == len(self.venv) - 1:
|
59 |
+
# 最后一层
|
60 |
+
self.n_tokens -= min(self.venv.pop(), self.n_tokens)
|
61 |
+
self.kv_cache_seq_trim()
|
62 |
+
else:
|
63 |
+
# 非最后一层
|
64 |
+
n_keep = self.n_tokens - sum(self.venv[i] for i in range(venv_idx, len(self.venv)))
|
65 |
+
n_discard = self.venv.pop(venv_idx)
|
66 |
+
self.kv_cache_seq_ltrim(n_keep, n_discard)
|
67 |
+
return len(self.venv) - 1
|
68 |
+
|
69 |
+
def venv_pop_token(self):
|
70 |
+
self.n_tokens -= 1
|
71 |
+
self.venv[-1] -= 1
|
72 |
+
self.kv_cache_seq_trim()
|
73 |
+
|
74 |
+
def kv_cache_seq_ltrim(self, n_keep, n_discard=256, n_past=-1, im_start=None):
|
75 |
+
if n_past < 0:
|
76 |
+
n_past = self.n_tokens
|
77 |
+
if im_start is not None: # [<|im_start|>, name, nl]
|
78 |
+
lps = compute_lps_array(im_start)
|
79 |
+
_idx = kmp_search(self.input_ids, im_start, n_keep + n_discard, n_past, lps)
|
80 |
+
if _idx >= n_keep: # 其实是大于等于 n_keep + n_discard
|
81 |
+
n_discard = _idx - n_keep # 截断到最近的 im_start 序列结构
|
82 |
+
else:
|
83 |
+
_idx = kmp_search(self.input_ids, im_start, n_keep, n_past, lps)
|
84 |
+
if _idx >= n_keep:
|
85 |
+
n_keep = _idx + len(im_start) # 至少保留一个 im_start 序列结构
|
86 |
+
self._ctx.kv_cache_seq_rm(-1, n_keep, n_keep + n_discard)
|
87 |
+
self._ctx.kv_cache_seq_shift(0, n_keep + n_discard, n_past, -n_discard)
|
88 |
+
self.input_ids[n_keep:n_past - n_discard] = self.input_ids[n_keep + n_discard:n_past]
|
89 |
+
self.n_tokens = n_past - n_discard
|
90 |
+
|
91 |
+
def eval_t(self, tokens, n_keep=4, n_discard=256, im_start=None):
|
92 |
+
if self._n_ctx < self.n_tokens + len(tokens):
|
93 |
+
tmp_n_discard = max(n_discard, self.n_tokens + len(tokens) - self._n_ctx)
|
94 |
+
self.kv_cache_seq_ltrim(n_keep, tmp_n_discard, im_start=im_start)
|
95 |
+
for i in range(0, len(tokens), self.n_batch):
|
96 |
+
batch = tokens[i: i + self.n_batch]
|
97 |
+
n_past = self.n_tokens
|
98 |
+
n_tokens = len(batch)
|
99 |
+
self._batch.set_batch(
|
100 |
+
batch=batch, n_past=n_past, logits_all=self.context_params.logits_all
|
101 |
+
)
|
102 |
+
self._ctx.decode(self._batch)
|
103 |
+
# Save tokens
|
104 |
+
self.input_ids[n_past: n_past + n_tokens] = batch
|
105 |
+
# Save logits
|
106 |
+
rows = n_tokens
|
107 |
+
cols = self._n_vocab
|
108 |
+
offset = (
|
109 |
+
0 if self.context_params.logits_all else n_tokens - 1
|
110 |
+
) # NOTE: Only save the last token logits if logits_all is False
|
111 |
+
self.scores[n_past + offset: n_past + n_tokens, :].reshape(-1)[
|
112 |
+
:
|
113 |
+
] = self._ctx.get_logits()[offset * cols: rows * cols]
|
114 |
+
# Update n_tokens
|
115 |
+
self.n_tokens += n_tokens
|
116 |
+
self.venv[-1] += n_tokens
|
117 |
+
return self.n_tokens
|
118 |
+
|
119 |
+
def sample_t(
|
120 |
+
self,
|
121 |
+
top_k: int = 40,
|
122 |
+
top_p: float = 0.95,
|
123 |
+
min_p: float = 0.05,
|
124 |
+
typical_p: float = 1.0,
|
125 |
+
temp: float = 0.80,
|
126 |
+
repeat_penalty: float = 1.1,
|
127 |
+
repeat_last_n: int = 64,
|
128 |
+
frequency_penalty: float = 0.0,
|
129 |
+
presence_penalty: float = 0.0,
|
130 |
+
tfs_z: float = 1.0,
|
131 |
+
mirostat_mode: int = 0,
|
132 |
+
mirostat_eta: float = 0.1,
|
133 |
+
mirostat_tau: float = 5.0,
|
134 |
+
penalize_nl: bool = True,
|
135 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
136 |
+
grammar: Optional[LlamaGrammar] = None,
|
137 |
+
):
|
138 |
+
last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
|
139 |
+
0, repeat_last_n - self.n_tokens
|
140 |
+
) + self._input_ids[-repeat_last_n:].tolist()
|
141 |
+
last_n_tokens_size = len(last_n_tokens_data)
|
142 |
+
n_vocab = self._n_vocab
|
143 |
+
n_ctx = self._n_ctx
|
144 |
+
top_k = n_vocab if top_k <= 0 else top_k
|
145 |
+
last_n_tokens_size = n_ctx if last_n_tokens_size < 0 else last_n_tokens_size
|
146 |
+
last_n_tokens_data_c = (llama_cpp.llama_token * last_n_tokens_size)(
|
147 |
+
*last_n_tokens_data
|
148 |
+
)
|
149 |
+
logits: npt.NDArray[np.single] = self.scores[self.n_tokens - 1: self.n_tokens, :].ravel()
|
150 |
+
|
151 |
+
if logits_processor is not None:
|
152 |
+
logits[:] = logits_processor(self._input_ids, logits)
|
153 |
+
|
154 |
+
self._candidates.copy_logits(logits)
|
155 |
+
self._ctx.sample_repetition_penalties(
|
156 |
+
candidates=self._candidates,
|
157 |
+
last_tokens_data=last_n_tokens_data_c,
|
158 |
+
penalty_last_n=last_n_tokens_size,
|
159 |
+
penalty_repeat=repeat_penalty,
|
160 |
+
penalty_freq=frequency_penalty,
|
161 |
+
penalty_present=presence_penalty,
|
162 |
+
)
|
163 |
+
if not penalize_nl:
|
164 |
+
nl_logit = logits[self._token_nl]
|
165 |
+
self._candidates.candidates.data[self._token_nl].logit = llama_cpp.c_float(
|
166 |
+
nl_logit
|
167 |
+
)
|
168 |
+
|
169 |
+
if grammar is not None:
|
170 |
+
self._ctx.sample_grammar(
|
171 |
+
candidates=self._candidates,
|
172 |
+
grammar=grammar,
|
173 |
+
)
|
174 |
+
|
175 |
+
if temp < 0.0:
|
176 |
+
self._ctx.sample_softmax(candidates=self._candidates)
|
177 |
+
id_ = self._candidates.candidates.data[0].id
|
178 |
+
elif temp == 0.0:
|
179 |
+
id_ = self._ctx.sample_token_greedy(candidates=self._candidates)
|
180 |
+
elif mirostat_mode == 1:
|
181 |
+
self._ctx.sample_temp(candidates=self._candidates, temp=temp)
|
182 |
+
id_ = self._ctx.sample_token_mirostat(
|
183 |
+
candidates=self._candidates,
|
184 |
+
tau=mirostat_tau,
|
185 |
+
eta=mirostat_eta,
|
186 |
+
mu=2.0 * mirostat_tau,
|
187 |
+
m=100,
|
188 |
+
)
|
189 |
+
elif mirostat_mode == 2:
|
190 |
+
self._ctx.sample_temp(candidates=self._candidates, temp=temp)
|
191 |
+
id_ = self._ctx.sample_token_mirostat_v2(
|
192 |
+
candidates=self._candidates,
|
193 |
+
tau=mirostat_tau,
|
194 |
+
eta=mirostat_eta,
|
195 |
+
mu=2.0 * mirostat_tau,
|
196 |
+
)
|
197 |
+
else:
|
198 |
+
self._ctx.sample_top_k(candidates=self._candidates, k=top_k, min_keep=1)
|
199 |
+
self._ctx.sample_tail_free(candidates=self._candidates, z=tfs_z, min_keep=1)
|
200 |
+
self._ctx.sample_typical(
|
201 |
+
candidates=self._candidates, p=typical_p, min_keep=1
|
202 |
+
)
|
203 |
+
self._ctx.sample_top_p(candidates=self._candidates, p=top_p, min_keep=1)
|
204 |
+
self._ctx.sample_min_p(candidates=self._candidates, p=min_p, min_keep=1)
|
205 |
+
self._ctx.sample_temp(candidates=self._candidates, temp=temp)
|
206 |
+
id_ = self._ctx.sample_token(candidates=self._candidates)
|
207 |
+
if grammar is not None:
|
208 |
+
self._ctx.grammar_accept_token(grammar=grammar, token=id_)
|
209 |
+
return id_
|
210 |
+
|
211 |
+
def generate_t(
|
212 |
+
self,
|
213 |
+
tokens: Sequence[int],
|
214 |
+
n_keep,
|
215 |
+
n_discard: int = 256,
|
216 |
+
im_start=None,
|
217 |
+
top_k: int = 40,
|
218 |
+
top_p: float = 0.95,
|
219 |
+
min_p: float = 0.05,
|
220 |
+
typical_p: float = 1.0,
|
221 |
+
temp: float = 0.80,
|
222 |
+
repeat_penalty: float = 1.1,
|
223 |
+
repeat_last_n: int = 64,
|
224 |
+
frequency_penalty: float = 0.0,
|
225 |
+
presence_penalty: float = 0.0,
|
226 |
+
tfs_z: float = 1.0,
|
227 |
+
mirostat_mode: int = 0,
|
228 |
+
mirostat_tau: float = 5.0,
|
229 |
+
mirostat_eta: float = 0.1,
|
230 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
231 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
232 |
+
grammar: Optional[LlamaGrammar] = None,
|
233 |
+
) -> Generator[int, Optional[Sequence[int]], None]:
|
234 |
+
typical_p = float(typical_p)
|
235 |
+
frequency_penalty = float(frequency_penalty)
|
236 |
+
presence_penalty = float(presence_penalty)
|
237 |
+
tfs_z = float(tfs_z)
|
238 |
+
mirostat_tau = float(mirostat_tau)
|
239 |
+
while True:
|
240 |
+
self.eval_t(tokens, n_keep, n_discard, im_start=im_start)
|
241 |
+
token = self.sample_t(
|
242 |
+
top_k=top_k,
|
243 |
+
top_p=top_p,
|
244 |
+
min_p=min_p,
|
245 |
+
typical_p=typical_p,
|
246 |
+
temp=temp,
|
247 |
+
repeat_penalty=repeat_penalty,
|
248 |
+
repeat_last_n=repeat_last_n,
|
249 |
+
frequency_penalty=frequency_penalty,
|
250 |
+
presence_penalty=presence_penalty,
|
251 |
+
tfs_z=tfs_z,
|
252 |
+
mirostat_mode=mirostat_mode,
|
253 |
+
mirostat_tau=mirostat_tau,
|
254 |
+
mirostat_eta=mirostat_eta,
|
255 |
+
logits_processor=logits_processor,
|
256 |
+
grammar=grammar,
|
257 |
+
)
|
258 |
+
if stopping_criteria is not None and stopping_criteria(
|
259 |
+
self._input_ids, self._scores[-1, :]
|
260 |
+
):
|
261 |
+
return
|
262 |
+
tokens_or_none = yield token
|
263 |
+
tokens = [token]
|
264 |
+
if tokens_or_none is not None:
|
265 |
+
tokens.extend(tokens_or_none)
|
266 |
+
|
267 |
+
def load_session(self, filepath: str):
|
268 |
+
n_tokens = POINTER(llama_cpp.c_size_t)(llama_cpp.c_size_t(0))
|
269 |
+
tokens = (llama_cpp.llama_token * self.n_ctx())()
|
270 |
+
retn = llama_cpp.llama_load_session_file(self._ctx.ctx,
|
271 |
+
filepath.encode('utf-8'),
|
272 |
+
tokens,
|
273 |
+
self.n_ctx(),
|
274 |
+
n_tokens)
|
275 |
+
self.n_tokens = n_tokens.contents.value
|
276 |
+
self.input_ids[:self.n_tokens] = tokens[:self.n_tokens]
|
277 |
+
return retn
|
278 |
+
|
279 |
+
def save_session(self, filepath: str):
|
280 |
+
tokens = self._input_ids.tolist()
|
281 |
+
tokens = (llama_cpp.llama_token * len(tokens))(*tokens)
|
282 |
+
return llama_cpp.llama_save_session_file(self._ctx.ctx, filepath.encode('utf-8'), tokens, self.n_tokens)
|