Real-ESRGAN / app.py
Ahsen Khaliq
Update app.py
d408b90
raw
history blame
2.67 kB
import os
import random
import gradio as gr
from PIL import Image
import torch
from random import randint
import sys
from subprocess import call
torch.hub.download_url_to_file('https://i.imgur.com/tXrot31.jpg', 'cpu.jpg')
torch.hub.download_url_to_file('http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution_files/100075_lowres.jpg', 'bear.jpg')
def run_cmd(command):
try:
print(command)
call(command, shell=True)
except KeyboardInterrupt:
print("Process interrupted")
sys.exit(1)
run_cmd("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P .")
run_cmd("pip install basicsr")
run_cmd("pip freeze")
#run_cmd("python setup.py develop")
def inference(img):
_id = randint(1, 10000)
INPUT_DIR = "/tmp/input_image" + str(_id) + "/"
OUTPUT_DIR = "/tmp/output_image" + str(_id) + "/"
run_cmd("rm -rf " + INPUT_DIR)
run_cmd("rm -rf " + OUTPUT_DIR)
run_cmd("mkdir " + INPUT_DIR)
run_cmd("mkdir " + OUTPUT_DIR)
basewidth = 256
wpercent = (basewidth/float(img.size[0]))
hsize = int((float(img.size[1])*float(wpercent)))
img = img.resize((basewidth,hsize), Image.ANTIALIAS)
img.save(INPUT_DIR + "1.jpg", "JPEG")
run_cmd("python inference_realesrgan.py --model_path RealESRGAN_x4plus.pth --input "+ INPUT_DIR + " --output " + OUTPUT_DIR + " --netscale 4 --outscale 3.5")
return os.path.join(OUTPUT_DIR, "1_out.jpg")
inferences_running = 0
def throttled_inference(image):
global inferences_running
current = inferences_running
if current >= 5:
print(f"Rejected inference when we already had {current} running")
return "cpu.jpg"
print(f"Inference starting when we already had {current} running")
inferences_running += 1
try:
return inference(image)
finally:
print("Inference finished")
inferences_running -= 1
title = "Real-ESRGAN"
description = "Gradio demo for Real-ESRGAN. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/xinntao/Real-ESRGAN'>Github Repo</a></p>"
gr.Interface(
throttled_inference,
[gr.inputs.Image(type="pil", label="Input")],
gr.outputs.Image(type="file", label="Output"),
title=title,
description=description,
article=article,
examples=[
['bear.jpg']
]
).launch(debug=True)