import os import random os.system("pip install gradio==2.9b23") import gradio as gr from PIL import Image import torch from subprocess import call # Install necessary packages os.system("pip install gradio==2.9b23") os.system("pip install basicsr") os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P .") os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P .") torch.hub.download_url_to_file('http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution_files/100075_lowres.jpg', 'bear.jpg') def run_cmd(command): try: print(command) call(command, shell=True) except KeyboardInterrupt: print("Process interrupted") sys.exit(1) def inference(img, mode): _id = random.randint(1, 10000) INPUT_DIR = "/tmp/input_image" + str(_id) + "/" OUTPUT_DIR = "/tmp/output_image" + str(_id) + "/" run_cmd("rm -rf " + INPUT_DIR) run_cmd("rm -rf " + OUTPUT_DIR) run_cmd("mkdir " + INPUT_DIR) run_cmd("mkdir " + OUTPUT_DIR) basewidth = 256 wpercent = (basewidth / float(img.size[0])) hsize = int((float(img.size[1]) * float(wpercent))) img = img.resize((basewidth, hsize), Image.LANCZOS) img.save(INPUT_DIR + "1.jpg", "JPEG") if mode == "base": run_cmd("python inference_realesrgan.py -n RealESRGAN_x4plus -i " + INPUT_DIR + " -o " + OUTPUT_DIR) else: run_cmd("python inference_realesrgan.py -n RealESRGAN_x4plus_anime_6B -i " + INPUT_DIR + " -o " + OUTPUT_DIR) return os.path.join(OUTPUT_DIR, "1_out.jpg") def main(): with gr.Blocks() as demo: gr.Markdown("# Real-ESRGAN") gr.Markdown( "Gradio demo for Real-ESRGAN. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please click submit only once." "\n\n" "

Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data | Github Repo

" ) with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Input") model_type = gr.Radio(["base", "anime"], type="value", default="base", label="Model type") examples = gr.Examples(examples=[['bear.jpg', 'base'], ['anime.png', 'anime']], inputs=[input_image, model_type]) submit_btn = gr.Button("Submit") with gr.Column(): output_image = gr.Image(type="file", label="Output") submit_btn.click(fn=inference, inputs=[input_image, model_type], outputs=output_image) demo.launch()