Spaces:
Runtime error
Runtime error
LobsterQQQ
commited on
Commit
•
2235d26
1
Parent(s):
bafe558
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
|
6 |
+
from point_e.diffusion.sampler import PointCloudSampler
|
7 |
+
from point_e.models.download import load_checkpoint
|
8 |
+
from point_e.models.configs import MODEL_CONFIGS, model_from_config
|
9 |
+
from point_e.util.plotting import plot_point_cloud
|
10 |
+
from point_e.util.pc_to_mesh import marching_cubes_mesh
|
11 |
+
|
12 |
+
import skimage.measure
|
13 |
+
|
14 |
+
from pyntcloud import PyntCloud
|
15 |
+
import matplotlib.colors
|
16 |
+
import plotly.graph_objs as go
|
17 |
+
|
18 |
+
import trimesh
|
19 |
+
|
20 |
+
import gradio as gr
|
21 |
+
|
22 |
+
|
23 |
+
state = ""
|
24 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
+
|
26 |
+
def set_state(s):
|
27 |
+
print(s)
|
28 |
+
global state
|
29 |
+
state = s
|
30 |
+
|
31 |
+
def get_state():
|
32 |
+
return state
|
33 |
+
|
34 |
+
set_state('Creating txt2mesh model...')
|
35 |
+
t2m_name = 'base40M-textvec'
|
36 |
+
t2m_model = model_from_config(MODEL_CONFIGS[t2m_name], device)
|
37 |
+
t2m_model.eval()
|
38 |
+
base_diffusion_t2m = diffusion_from_config(DIFFUSION_CONFIGS[t2m_name])
|
39 |
+
|
40 |
+
set_state('Downloading txt2mesh checkpoint...')
|
41 |
+
t2m_model.load_state_dict(load_checkpoint(t2m_name, device))
|
42 |
+
|
43 |
+
|
44 |
+
def load_img2mesh_model(model_name):
|
45 |
+
set_state(f'Creating img2mesh model {model_name}...')
|
46 |
+
i2m_name = model_name
|
47 |
+
i2m_model = model_from_config(MODEL_CONFIGS[i2m_name], device)
|
48 |
+
i2m_model.eval()
|
49 |
+
base_diffusion_i2m = diffusion_from_config(DIFFUSION_CONFIGS[i2m_name])
|
50 |
+
|
51 |
+
set_state(f'Downloading img2mesh checkpoint {model_name}...')
|
52 |
+
i2m_model.load_state_dict(load_checkpoint(i2m_name, device))
|
53 |
+
|
54 |
+
return i2m_model, base_diffusion_i2m
|
55 |
+
|
56 |
+
img2mesh_model_name = 'base40M' #'base300M' #'base1B'
|
57 |
+
i2m_model, base_diffusion_i2m = load_img2mesh_model(img2mesh_model_name)
|
58 |
+
|
59 |
+
|
60 |
+
set_state('Creating upsample model...')
|
61 |
+
upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
|
62 |
+
upsampler_model.eval()
|
63 |
+
upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
|
64 |
+
|
65 |
+
set_state('Downloading upsampler checkpoint...')
|
66 |
+
upsampler_model.load_state_dict(load_checkpoint('upsample', device))
|
67 |
+
|
68 |
+
set_state('Creating SDF model...')
|
69 |
+
sdf_name = 'sdf'
|
70 |
+
sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device)
|
71 |
+
sdf_model.eval()
|
72 |
+
|
73 |
+
set_state('Loading SDF model...')
|
74 |
+
sdf_model.load_state_dict(load_checkpoint(sdf_name, device))
|
75 |
+
|
76 |
+
stable_diffusion = gr.Blocks.load(name="spaces/runwayml/stable-diffusion-v1-5")
|
77 |
+
|
78 |
+
|
79 |
+
set_state('')
|
80 |
+
|
81 |
+
def get_sampler(model_name, txt2obj, guidance_scale):
|
82 |
+
|
83 |
+
global img2mesh_model_name
|
84 |
+
global base_diffusion_i2m
|
85 |
+
global i2m_model
|
86 |
+
if model_name != img2mesh_model_name:
|
87 |
+
img2mesh_model_name = model_name
|
88 |
+
i2m_model, base_diffusion_i2m = load_img2mesh_model(model_name)
|
89 |
+
|
90 |
+
return PointCloudSampler(
|
91 |
+
device=device,
|
92 |
+
models=[t2m_model if txt2obj else i2m_model, upsampler_model],
|
93 |
+
diffusions=[base_diffusion_t2m if txt2obj else base_diffusion_i2m, upsampler_diffusion],
|
94 |
+
num_points=[1024, 4096 - 1024],
|
95 |
+
aux_channels=['R', 'G', 'B'],
|
96 |
+
guidance_scale=[guidance_scale, 0.0 if txt2obj else guidance_scale],
|
97 |
+
model_kwargs_key_filter=('texts', '') if txt2obj else ("*",)
|
98 |
+
)
|
99 |
+
|
100 |
+
def generate_txt2img(prompt):
|
101 |
+
|
102 |
+
prompt = f"“a 3d rendering of {prompt}, full view, white background"
|
103 |
+
gallery_dir = stable_diffusion(prompt, fn_index=2)
|
104 |
+
imgs = [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir) if os.path.splitext(img)[1] == '.jpg']
|
105 |
+
|
106 |
+
return imgs[0], gr.update(visible=True)
|
107 |
+
|
108 |
+
def generate_3D(input, model_name='base40M', guidance_scale=3.0, grid_size=32):
|
109 |
+
|
110 |
+
set_state('Entered generate function...')
|
111 |
+
|
112 |
+
if isinstance(input, Image.Image):
|
113 |
+
input = prepare_img(input)
|
114 |
+
|
115 |
+
# if input is a string, it's a text prompt
|
116 |
+
sampler = get_sampler(model_name, txt2obj=True if isinstance(input, str) else False, guidance_scale=guidance_scale)
|
117 |
+
|
118 |
+
# Produce a sample from the model.
|
119 |
+
set_state('Sampling...')
|
120 |
+
samples = None
|
121 |
+
kw_args = dict(texts=[input]) if isinstance(input, str) else dict(images=[input])
|
122 |
+
for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=kw_args):
|
123 |
+
samples = x
|
124 |
+
|
125 |
+
set_state('Converting to point cloud...')
|
126 |
+
pc = sampler.output_to_point_clouds(samples)[0]
|
127 |
+
|
128 |
+
set_state('Saving point cloud...')
|
129 |
+
with open("point_cloud.ply", "wb") as f:
|
130 |
+
pc.write_ply(f)
|
131 |
+
|
132 |
+
set_state('Converting to mesh...')
|
133 |
+
save_ply(pc, 'mesh.ply', grid_size)
|
134 |
+
|
135 |
+
set_state('')
|
136 |
+
|
137 |
+
return pc_to_plot(pc), ply_to_obj('mesh.ply', '3d_model.obj'), gr.update(value=['3d_model.obj', 'mesh.ply', 'point_cloud.ply'], visible=True)
|
138 |
+
|
139 |
+
def prepare_img(img):
|
140 |
+
|
141 |
+
w, h = img.size
|
142 |
+
if w > h:
|
143 |
+
img = img.crop((w - h) / 2, 0, w - (w - h) / 2, h)
|
144 |
+
else:
|
145 |
+
img = img.crop((0, (h - w) / 2, w, h - (h - w) / 2))
|
146 |
+
|
147 |
+
# resize to 256x256
|
148 |
+
img = img.resize((256, 256))
|
149 |
+
|
150 |
+
return img
|
151 |
+
|
152 |
+
def pc_to_plot(pc):
|
153 |
+
|
154 |
+
return go.Figure(
|
155 |
+
data=[
|
156 |
+
go.Scatter3d(
|
157 |
+
x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2],
|
158 |
+
mode='markers',
|
159 |
+
marker=dict(
|
160 |
+
size=2,
|
161 |
+
color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])],
|
162 |
+
)
|
163 |
+
)
|
164 |
+
],
|
165 |
+
layout=dict(
|
166 |
+
scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False))
|
167 |
+
),
|
168 |
+
)
|
169 |
+
|
170 |
+
def ply_to_obj(ply_file, obj_file):
|
171 |
+
mesh = trimesh.load(ply_file)
|
172 |
+
mesh.export(obj_file)
|
173 |
+
|
174 |
+
return obj_file
|
175 |
+
|
176 |
+
def save_ply(pc, file_name, grid_size):
|
177 |
+
|
178 |
+
# Produce a mesh (with vertex colors)
|
179 |
+
mesh = marching_cubes_mesh(
|
180 |
+
pc=pc,
|
181 |
+
model=sdf_model,
|
182 |
+
batch_size=4096,
|
183 |
+
grid_size=grid_size, # increase to 128 for resolution used in evals
|
184 |
+
fill_vertex_channels=True,
|
185 |
+
progress=True,
|
186 |
+
)
|
187 |
+
|
188 |
+
# Write the mesh to a PLY file to import into some other program.
|
189 |
+
with open(file_name, 'wb') as f:
|
190 |
+
mesh.write_ply(f)
|
191 |
+
|
192 |
+
|
193 |
+
with gr.Blocks() as app:
|
194 |
+
|
195 |
+
|
196 |
+
with gr.Row():
|
197 |
+
with gr.Column():
|
198 |
+
with gr.Tab("Text to 3D"):
|
199 |
+
prompt = gr.Textbox(label="Prompt", placeholder="A cactus in a pot")
|
200 |
+
btn_generate_txt2obj = gr.Button(value="Generate")
|
201 |
+
|
202 |
+
with gr.Tab("Image to 3D"):
|
203 |
+
img = gr.Image(label="Image")
|
204 |
+
gr.Markdown("Best results with images of 3D objects with no shadows on a white background.")
|
205 |
+
btn_generate_img2obj = gr.Button(value="Generate")
|
206 |
+
|
207 |
+
with gr.Tab("Text to Image to 3D"):
|
208 |
+
gr.Markdown("Generate an image with Stable Diffusion, then convert it to 3D. Just enter the object you want to generate.")
|
209 |
+
prompt_sd = gr.Textbox(label="Prompt", placeholder="a 3d rendering of [your prompt], full view, white background")
|
210 |
+
btn_generate_txt2sd = gr.Button(value="Generate image")
|
211 |
+
img_sd = gr.Image(label="Image")
|
212 |
+
btn_generate_sd2obj = gr.Button(value="Convert to 3D", visible=False)
|
213 |
+
|
214 |
+
with gr.Accordion("Advanced settings", open=False):
|
215 |
+
dropdown_models = gr.Dropdown(label="Model", value="base40M", choices=["base40M", "base300M"]) #, "base1B"])
|
216 |
+
guidance_scale = gr.Slider(label="Guidance scale", value=3.0, minimum=3.0, maximum=10.0, step=0.1)
|
217 |
+
grid_size = gr.Slider(label="Grid size (for .obj 3D model)", value=32, minimum=16, maximum=128, step=16)
|
218 |
+
|
219 |
+
with gr.Column():
|
220 |
+
plot = gr.Plot(label="Point cloud")
|
221 |
+
# btn_pc_to_obj = gr.Button(value="Convert to OBJ", visible=False)
|
222 |
+
model_3d = gr.Model3D(value=None)
|
223 |
+
file_out = gr.File(label="Files", visible=False)
|
224 |
+
|
225 |
+
# state_info = state_info = gr.Textbox(label="State", show_label=False).style(container=False)
|
226 |
+
|
227 |
+
|
228 |
+
# inputs = [dropdown_models, prompt, img, guidance_scale, grid_size]
|
229 |
+
outputs = [plot, model_3d, file_out]
|
230 |
+
|
231 |
+
prompt.submit(generate_3D, inputs=[prompt, dropdown_models, guidance_scale, grid_size], outputs=outputs)
|
232 |
+
btn_generate_txt2obj.click(generate_3D, inputs=[prompt, dropdown_models, guidance_scale, grid_size], outputs=outputs)
|
233 |
+
|
234 |
+
btn_generate_img2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs)
|
235 |
+
|
236 |
+
prompt_sd.submit(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj])
|
237 |
+
btn_generate_txt2sd.click(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj], queue=False)
|
238 |
+
btn_generate_sd2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs)
|
239 |
+
|
240 |
+
# btn_pc_to_obj.click(ply_to_obj, inputs=plot, outputs=[model_3d, file_out])
|
241 |
+
|
242 |
+
|
243 |
+
# app.load(get_state, inputs=[], outputs=state_info, every=0.5, show_progress=False)
|
244 |
+
|
245 |
+
|
246 |
+
app.queue(max_size=250, concurrency_count=6).launch()
|