|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
pipe = pipeline("text-generation", model="AIDC-AI/Marco-o1") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [system_message] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append(val[0]) |
|
if val[1]: |
|
messages.append(val[1]) |
|
|
|
messages.append(message) |
|
|
|
|
|
input_text = "\n".join(messages) |
|
|
|
response = pipe( |
|
input_text, |
|
max_length=max_tokens + len(input_text), |
|
temperature=temperature, |
|
top_p=top_p, |
|
num_return_sequences=1 |
|
)[0]['generated_text'] |
|
|
|
|
|
new_response = response[len(input_text):].strip() |
|
|
|
yield new_response |
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |