import gradio as gr from transformers import pipeline # Загрузка модели Marco-o1 с квантизацией pipe = pipeline("text-generation", model="AIDC-AI/Marco-o1", device_map="auto", torch_dtype="auto", trust_remote_code=True) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [system_message] for val in history: if val[0]: messages.append(val[0]) if val[1]: messages.append(val[1]) messages.append(message) # Объединяем все сообщения в одну строку для передачи в модель input_text = "\n".join(messages) response = pipe( input_text, max_length=max_tokens + len(input_text), temperature=temperature, top_p=top_p, num_return_sequences=1 )[0]['generated_text'] # Извлекаем новый ответ, исключая входные сообщения new_response = response[len(input_text):].strip() yield new_response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()