Spaces:
Sleeping
Sleeping
import streamlit as st | |
import chromadb | |
from chromadb.utils import embedding_functions | |
from sentence_transformers import SentenceTransformer | |
from openai import OpenAI | |
client = chromadb.PersistentClient(path="./chromadb/") | |
MODEL_NAME: str = "mixedbread-ai/mxbai-embed-large-v1" # ~ 0.5 gb | |
COLLECTION_NAME: str = "scheme" | |
EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=MODEL_NAME) | |
schemer = client.get_collection( | |
name=COLLECTION_NAME, | |
embedding_function=EMBEDDING_FUNC, | |
) | |
DATA_AVAL: bool = schemer.count() > 0 | |
APP_NAME: str = "Groove-GPT" | |
st.title(APP_NAME) | |
st.header("What is Groovy-GPT?") | |
st.write("Groovy-GPT is a RAG (Retrieval-Augmented Generation) model that uses ChromaDB to retrieve relevant documents and then uses OpenAI's models to generate a response.") | |
st.write("The model is trained on the MIT Scheme textbook and a handful of Discrete Math and Paradigms related content that Professor Troeger posted") | |
st.write("Data Avaliable: ", DATA_AVAL) | |
user_question: str = st.text_area("Enter your groovy questions here") | |
access_key: str = st.text_input("Enter your gpt key here", type="password") | |
st.markdown("*For more information about how to get an access key, read [this article](https://platform.openai.com/api-keys).*", unsafe_allow_html=True) | |
gpt_type: str = st.selectbox(label="Choose GPT Type", options=["gpt-3.5-turbo", "gpt-3.5-turbo-1106", "gpt-3.5-turbo-0125", "gpt-4-32k-0613", "gpt-4-0613", "gpt-4-0125-preview"], index=0) | |
st.markdown("*For more information about GPT types, read [this article](https://platform.openai.com/docs/models). Make sure it has money in it ☠️*", unsafe_allow_html=True) | |
if st.button('Query Database') & (access_key != "") & (user_question != ""): | |
openai_client = OpenAI(api_key=access_key) | |
with st.spinner('Loading...'): | |
st.header("Results") | |
# Perform the Chromadb query. | |
results = schemer.query( | |
query_texts=[user_question], | |
n_results=10, | |
include = ['documents'] | |
) | |
documents = results["documents"] | |
response = openai_client.chat.completions.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are an expert in functional programming in Scheme, with great knowledge on programming paradigms."}, | |
{"role": "user", "content": user_question}, | |
{"role": "assistant", "content": str(documents)}, | |
] | |
) | |
st.write(response.choices[0].message.content) | |