Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,58 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
}
|
10 |
-
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
st.warning("No Quiz Questions and Answers")
|
60 |
-
|
61 |
-
else:
|
62 |
-
st.warning("Click the 'Generate Quizzes' button to create quizzes.")
|
|
|
1 |
+
from langchain.prompts import PromptTemplate
|
2 |
+
from langchain.llms import CTransformers
|
3 |
+
from langchain.chains import LLMChain
|
4 |
+
from langchain.chains import SequentialChain
|
5 |
+
from langchain.llms import HuggingFaceHub
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
# load_dotenv();
|
9 |
+
config = {'max_new_tokens': 512, 'temperature': 0.6}
|
10 |
+
|
11 |
+
# Create function for app
|
12 |
+
def GetLLMResponse(selected_topic_level,
|
13 |
+
selected_topic,
|
14 |
+
num_quizzes):
|
15 |
+
|
16 |
+
# Calling llama model
|
17 |
+
# llm = CTransformers(model="D:\Code Workspace\DL Model\llama-2-7b-chat.ggmlv3.q8_0.bin",
|
18 |
+
# model_type = 'llama',
|
19 |
+
# config = config)
|
20 |
+
|
21 |
+
# llm = CTransformers(model='TheBloke/Llama-2-7B-Chat-GGML',
|
22 |
+
# model_file = 'llama-2-7b-chat.ggmlv3.q8_0.bin',
|
23 |
+
# model_type = 'llama',
|
24 |
+
# config = config)
|
25 |
+
|
26 |
+
llm = HuggingFaceHub(
|
27 |
+
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
28 |
+
model_kwargs = config
|
29 |
+
)
|
30 |
+
|
31 |
+
## Create LLM Chaining
|
32 |
+
questions_template = "I want you to just generate question with this specification: Generate a {selected_topic_level} math quiz on the topic of {selected_topic}. Generate only {num_quizzes} questions not more and without providing answers. The Question should not in image format/link"
|
33 |
+
questions_prompt = PromptTemplate(input_variables=["selected_topic_level", "selected_topic", "num_quizzes"],
|
34 |
+
template=questions_template)
|
35 |
+
questions_chain = LLMChain(llm= llm,
|
36 |
+
prompt = questions_prompt,
|
37 |
+
output_key = "questions")
|
38 |
+
|
39 |
+
|
40 |
+
answer_template = "I want you to become a teacher answer this specific Question:\n {questions}\n\n. You should gave me a straightforward and consise explanation and answer to each one of them"
|
41 |
+
answer_prompt = PromptTemplate(input_variables = ["questions"],
|
42 |
+
template = answer_template)
|
43 |
+
answer_chain = LLMChain(llm = llm,
|
44 |
+
prompt = answer_prompt,
|
45 |
+
output_key = "answer")
|
46 |
+
|
47 |
+
## Create Sequential Chaining
|
48 |
+
seq_chain = SequentialChain(chains = [questions_chain, answer_chain],
|
49 |
+
input_variables = ['selected_topic_level', 'selected_topic', 'num_quizzes'],
|
50 |
+
output_variables = ['questions', 'answer'])
|
51 |
+
|
52 |
+
response = seq_chain({'selected_topic_level': selected_topic_level,
|
53 |
+
'selected_topic': selected_topic,
|
54 |
+
'num_quizzes' : num_quizzes})
|
55 |
+
|
56 |
+
## Generate the response from the llama 2 model
|
57 |
+
print(response)
|
58 |
+
return response
|
|
|
|
|
|
|
|