Spaces:
Runtime error
Runtime error
File size: 23,468 Bytes
647097e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
from __future__ import annotations
from typing import TYPE_CHECKING, List
import logging
import json
import commentjson as cjson
import os
import sys
import requests
import urllib3
import platform
import base64
from io import BytesIO
from PIL import Image
from tqdm import tqdm
import colorama
from duckduckgo_search import ddg
import asyncio
import aiohttp
from enum import Enum
import uuid
from .presets import *
from .llama_func import *
from .utils import *
from . import shared
from .config import retrieve_proxy
from modules import config
from .base_model import BaseLLMModel, ModelType
class OpenAIClient(BaseLLMModel):
def __init__(
self,
model_name,
api_key,
system_prompt=INITIAL_SYSTEM_PROMPT,
temperature=1.0,
top_p=1.0,
) -> None:
super().__init__(
model_name=model_name,
temperature=temperature,
top_p=top_p,
system_prompt=system_prompt,
)
self.api_key = api_key
self.need_api_key = True
self._refresh_header()
def get_answer_stream_iter(self):
response = self._get_response(stream=True)
if response is not None:
iter = self._decode_chat_response(response)
partial_text = ""
for i in iter:
partial_text += i
yield partial_text
else:
yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG
def get_answer_at_once(self):
response = self._get_response()
response = json.loads(response.text)
content = response["choices"][0]["message"]["content"]
total_token_count = response["usage"]["total_tokens"]
return content, total_token_count
def count_token(self, user_input):
input_token_count = count_token(construct_user(user_input))
if self.system_prompt is not None and len(self.all_token_counts) == 0:
system_prompt_token_count = count_token(
construct_system(self.system_prompt)
)
return input_token_count + system_prompt_token_count
return input_token_count
def billing_info(self):
try:
curr_time = datetime.datetime.now()
last_day_of_month = get_last_day_of_month(
curr_time).strftime("%Y-%m-%d")
first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d")
usage_url = f"{shared.state.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}"
try:
usage_data = self._get_billing_data(usage_url)
except Exception as e:
logging.error(f"获取API使用情况失败:" + str(e))
return i18n("**获取API使用情况失败**")
rounded_usage = "{:.5f}".format(usage_data["total_usage"] / 100)
return i18n("**本月使用金额** ") + f"\u3000 ${rounded_usage}"
except requests.exceptions.ConnectTimeout:
status_text = (
STANDARD_ERROR_MSG + CONNECTION_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
)
return status_text
except requests.exceptions.ReadTimeout:
status_text = STANDARD_ERROR_MSG + READ_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
return status_text
except Exception as e:
import traceback
traceback.print_exc()
logging.error(i18n("获取API使用情况失败:") + str(e))
return STANDARD_ERROR_MSG + ERROR_RETRIEVE_MSG
def set_token_upper_limit(self, new_upper_limit):
pass
@shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用
def _get_response(self, stream=False):
openai_api_key = self.api_key
system_prompt = self.system_prompt
history = self.history
logging.debug(colorama.Fore.YELLOW +
f"{history}" + colorama.Fore.RESET)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}",
}
if system_prompt is not None:
history = [construct_system(system_prompt), *history]
payload = {
"model": self.model_name,
"messages": history,
"temperature": self.temperature,
"top_p": self.top_p,
"n": self.n_choices,
"stream": stream,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
}
if self.max_generation_token is not None:
payload["max_tokens"] = self.max_generation_token
if self.stop_sequence is not None:
payload["stop"] = self.stop_sequence
if self.logit_bias is not None:
payload["logit_bias"] = self.logit_bias
if self.user_identifier is not None:
payload["user"] = self.user_identifier
if stream:
timeout = TIMEOUT_STREAMING
else:
timeout = TIMEOUT_ALL
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
if shared.state.completion_url != COMPLETION_URL:
logging.info(f"使用自定义API URL: {shared.state.completion_url}")
with retrieve_proxy():
try:
response = requests.post(
shared.state.completion_url,
headers=headers,
json=payload,
stream=stream,
timeout=timeout,
)
except:
return None
return response
def _refresh_header(self):
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
def _get_billing_data(self, billing_url):
with retrieve_proxy():
response = requests.get(
billing_url,
headers=self.headers,
timeout=TIMEOUT_ALL,
)
if response.status_code == 200:
data = response.json()
return data
else:
raise Exception(
f"API request failed with status code {response.status_code}: {response.text}"
)
def _decode_chat_response(self, response):
error_msg = ""
for chunk in response.iter_lines():
if chunk:
chunk = chunk.decode()
chunk_length = len(chunk)
try:
chunk = json.loads(chunk[6:])
except json.JSONDecodeError:
print(i18n("JSON解析错误,收到的内容: ") + f"{chunk}")
error_msg += chunk
continue
if chunk_length > 6 and "delta" in chunk["choices"][0]:
if chunk["choices"][0]["finish_reason"] == "stop":
break
try:
yield chunk["choices"][0]["delta"]["content"]
except Exception as e:
# logging.error(f"Error: {e}")
continue
if error_msg:
raise Exception(error_msg)
def set_key(self, new_access_key):
ret = super().set_key(new_access_key)
self._refresh_header()
return ret
class ChatGLM_Client(BaseLLMModel):
def __init__(self, model_name) -> None:
super().__init__(model_name=model_name)
from transformers import AutoTokenizer, AutoModel
import torch
global CHATGLM_TOKENIZER, CHATGLM_MODEL
if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None:
system_name = platform.system()
model_path = None
if os.path.exists("models"):
model_dirs = os.listdir("models")
if model_name in model_dirs:
model_path = f"models/{model_name}"
if model_path is not None:
model_source = model_path
else:
model_source = f"THUDM/{model_name}"
CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained(
model_source, trust_remote_code=True
)
quantified = False
if "int4" in model_name:
quantified = True
model = AutoModel.from_pretrained(
model_source, trust_remote_code=True
)
if torch.cuda.is_available():
# run on CUDA
logging.info("CUDA is available, using CUDA")
model = model.half().cuda()
# mps加速还存在一些问题,暂时不使用
elif system_name == "Darwin" and model_path is not None and not quantified:
logging.info("Running on macOS, using MPS")
# running on macOS and model already downloaded
model = model.half().to("mps")
else:
logging.info("GPU is not available, using CPU")
model = model.float()
model = model.eval()
CHATGLM_MODEL = model
def _get_glm_style_input(self):
history = [x["content"] for x in self.history]
query = history.pop()
logging.debug(colorama.Fore.YELLOW +
f"{history}" + colorama.Fore.RESET)
assert (
len(history) % 2 == 0
), f"History should be even length. current history is: {history}"
history = [[history[i], history[i + 1]]
for i in range(0, len(history), 2)]
return history, query
def get_answer_at_once(self):
history, query = self._get_glm_style_input()
response, _ = CHATGLM_MODEL.chat(
CHATGLM_TOKENIZER, query, history=history)
return response, len(response)
def get_answer_stream_iter(self):
history, query = self._get_glm_style_input()
for response, history in CHATGLM_MODEL.stream_chat(
CHATGLM_TOKENIZER,
query,
history,
max_length=self.token_upper_limit,
top_p=self.top_p,
temperature=self.temperature,
):
yield response
class LLaMA_Client(BaseLLMModel):
def __init__(
self,
model_name,
lora_path=None,
) -> None:
super().__init__(model_name=model_name)
from lmflow.datasets.dataset import Dataset
from lmflow.pipeline.auto_pipeline import AutoPipeline
from lmflow.models.auto_model import AutoModel
from lmflow.args import ModelArguments, DatasetArguments, InferencerArguments
self.max_generation_token = 1000
self.end_string = "\n\n"
# We don't need input data
data_args = DatasetArguments(dataset_path=None)
self.dataset = Dataset(data_args)
self.system_prompt = ""
global LLAMA_MODEL, LLAMA_INFERENCER
if LLAMA_MODEL is None or LLAMA_INFERENCER is None:
model_path = None
if os.path.exists("models"):
model_dirs = os.listdir("models")
if model_name in model_dirs:
model_path = f"models/{model_name}"
if model_path is not None:
model_source = model_path
else:
model_source = f"decapoda-research/{model_name}"
# raise Exception(f"models目录下没有这个模型: {model_name}")
if lora_path is not None:
lora_path = f"lora/{lora_path}"
model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None,
use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
pipeline_args = InferencerArguments(
local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
with open(pipeline_args.deepspeed, "r") as f:
ds_config = json.load(f)
LLAMA_MODEL = AutoModel.get_model(
model_args,
tune_strategy="none",
ds_config=ds_config,
)
LLAMA_INFERENCER = AutoPipeline.get_pipeline(
pipeline_name="inferencer",
model_args=model_args,
data_args=data_args,
pipeline_args=pipeline_args,
)
def _get_llama_style_input(self):
history = []
instruction = ""
if self.system_prompt:
instruction = (f"Instruction: {self.system_prompt}\n")
for x in self.history:
if x["role"] == "user":
history.append(f"{instruction}Input: {x['content']}")
else:
history.append(f"Output: {x['content']}")
context = "\n\n".join(history)
context += "\n\nOutput: "
return context
def get_answer_at_once(self):
context = self._get_llama_style_input()
input_dataset = self.dataset.from_dict(
{"type": "text_only", "instances": [{"text": context}]}
)
output_dataset = LLAMA_INFERENCER.inference(
model=LLAMA_MODEL,
dataset=input_dataset,
max_new_tokens=self.max_generation_token,
temperature=self.temperature,
)
response = output_dataset.to_dict()["instances"][0]["text"]
return response, len(response)
def get_answer_stream_iter(self):
context = self._get_llama_style_input()
partial_text = ""
step = 1
for _ in range(0, self.max_generation_token, step):
input_dataset = self.dataset.from_dict(
{"type": "text_only", "instances": [
{"text": context + partial_text}]}
)
output_dataset = LLAMA_INFERENCER.inference(
model=LLAMA_MODEL,
dataset=input_dataset,
max_new_tokens=step,
temperature=self.temperature,
)
response = output_dataset.to_dict()["instances"][0]["text"]
if response == "" or response == self.end_string:
break
partial_text += response
yield partial_text
class XMChat(BaseLLMModel):
def __init__(self, api_key):
super().__init__(model_name="xmchat")
self.api_key = api_key
self.session_id = None
self.reset()
self.image_bytes = None
self.image_path = None
self.xm_history = []
self.url = "https://xmbot.net/web"
self.last_conv_id = None
def reset(self):
self.session_id = str(uuid.uuid4())
self.last_conv_id = None
return [], "已重置"
def image_to_base64(self, image_path):
# 打开并加载图片
img = Image.open(image_path)
# 获取图片的宽度和高度
width, height = img.size
# 计算压缩比例,以确保最长边小于4096像素
max_dimension = 2048
scale_ratio = min(max_dimension / width, max_dimension / height)
if scale_ratio < 1:
# 按压缩比例调整图片大小
new_width = int(width * scale_ratio)
new_height = int(height * scale_ratio)
img = img.resize((new_width, new_height), Image.ANTIALIAS)
# 将图片转换为jpg格式的二进制数据
buffer = BytesIO()
if img.mode == "RGBA":
img = img.convert("RGB")
img.save(buffer, format='JPEG')
binary_image = buffer.getvalue()
# 对二进制数据进行Base64编码
base64_image = base64.b64encode(binary_image).decode('utf-8')
return base64_image
def try_read_image(self, filepath):
def is_image_file(filepath):
# 判断文件是否为图片
valid_image_extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"]
file_extension = os.path.splitext(filepath)[1].lower()
return file_extension in valid_image_extensions
if is_image_file(filepath):
logging.info(f"读取图片文件: {filepath}")
self.image_bytes = self.image_to_base64(filepath)
self.image_path = filepath
else:
self.image_bytes = None
self.image_path = None
def like(self):
if self.last_conv_id is None:
return "点赞失败,你还没发送过消息"
data = {
"uuid": self.last_conv_id,
"appraise": "good"
}
response = requests.post(self.url, json=data)
return "👍点赞成功,,感谢反馈~"
def dislike(self):
if self.last_conv_id is None:
return "点踩失败,你还没发送过消息"
data = {
"uuid": self.last_conv_id,
"appraise": "bad"
}
response = requests.post(self.url, json=data)
return "👎点踩成功,感谢反馈~"
def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot):
fake_inputs = real_inputs
display_append = ""
limited_context = False
return limited_context, fake_inputs, display_append, real_inputs, chatbot
def handle_file_upload(self, files, chatbot):
"""if the model accepts multi modal input, implement this function"""
if files:
for file in files:
if file.name:
logging.info(f"尝试读取图像: {file.name}")
self.try_read_image(file.name)
if self.image_path is not None:
chatbot = chatbot + [((self.image_path,), None)]
if self.image_bytes is not None:
logging.info("使用图片作为输入")
# XMChat的一轮对话中实际上只能处理一张图片
self.reset()
conv_id = str(uuid.uuid4())
data = {
"user_id": self.api_key,
"session_id": self.session_id,
"uuid": conv_id,
"data_type": "imgbase64",
"data": self.image_bytes
}
response = requests.post(self.url, json=data)
response = json.loads(response.text)
logging.info(f"图片回复: {response['data']}")
return None, chatbot, None
def get_answer_at_once(self):
question = self.history[-1]["content"]
conv_id = str(uuid.uuid4())
self.last_conv_id = conv_id
data = {
"user_id": self.api_key,
"session_id": self.session_id,
"uuid": conv_id,
"data_type": "text",
"data": question
}
response = requests.post(self.url, json=data)
try:
response = json.loads(response.text)
return response["data"], len(response["data"])
except Exception as e:
return response.text, len(response.text)
def get_model(
model_name,
lora_model_path=None,
access_key=None,
temperature=None,
top_p=None,
system_prompt=None,
) -> BaseLLMModel:
msg = i18n("模型设置为了:") + f" {model_name}"
model_type = ModelType.get_type(model_name)
lora_selector_visibility = False
lora_choices = []
dont_change_lora_selector = False
if model_type != ModelType.OpenAI:
config.local_embedding = True
# del current_model.model
model = None
try:
if model_type == ModelType.OpenAI:
logging.info(f"正在加载OpenAI模型: {model_name}")
model = OpenAIClient(
model_name=model_name,
api_key=access_key,
system_prompt=system_prompt,
temperature=temperature,
top_p=top_p,
)
elif model_type == ModelType.ChatGLM:
logging.info(f"正在加载ChatGLM模型: {model_name}")
model = ChatGLM_Client(model_name)
elif model_type == ModelType.LLaMA and lora_model_path == "":
msg = f"现在请为 {model_name} 选择LoRA模型"
logging.info(msg)
lora_selector_visibility = True
if os.path.isdir("lora"):
lora_choices = get_file_names(
"lora", plain=True, filetypes=[""])
lora_choices = ["No LoRA"] + lora_choices
elif model_type == ModelType.LLaMA and lora_model_path != "":
logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}")
dont_change_lora_selector = True
if lora_model_path == "No LoRA":
lora_model_path = None
msg += " + No LoRA"
else:
msg += f" + {lora_model_path}"
model = LLaMA_Client(model_name, lora_model_path)
elif model_type == ModelType.XMChat:
if os.environ.get("XMCHAT_API_KEY") != "":
access_key = os.environ.get("XMCHAT_API_KEY")
model = XMChat(api_key=access_key)
elif model_type == ModelType.Unknown:
raise ValueError(f"未知模型: {model_name}")
logging.info(msg)
except Exception as e:
logging.error(e)
msg = f"{STANDARD_ERROR_MSG}: {e}"
if dont_change_lora_selector:
return model, msg
else:
return model, msg, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility)
if __name__ == "__main__":
with open("config.json", "r") as f:
openai_api_key = cjson.load(f)["openai_api_key"]
# set logging level to debug
logging.basicConfig(level=logging.DEBUG)
# client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key)
client = get_model(model_name="chatglm-6b-int4")
chatbot = []
stream = False
# 测试账单功能
logging.info(colorama.Back.GREEN + "测试账单功能" + colorama.Back.RESET)
logging.info(client.billing_info())
# 测试问答
logging.info(colorama.Back.GREEN + "测试问答" + colorama.Back.RESET)
question = "巴黎是中国的首都吗?"
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
logging.info(i)
logging.info(f"测试问答后history : {client.history}")
# 测试记忆力
logging.info(colorama.Back.GREEN + "测试记忆力" + colorama.Back.RESET)
question = "我刚刚问了你什么问题?"
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
logging.info(i)
logging.info(f"测试记忆力后history : {client.history}")
# 测试重试功能
logging.info(colorama.Back.GREEN + "测试重试功能" + colorama.Back.RESET)
for i in client.retry(chatbot=chatbot, stream=stream):
logging.info(i)
logging.info(f"重试后history : {client.history}")
# # 测试总结功能
# print(colorama.Back.GREEN + "测试总结功能" + colorama.Back.RESET)
# chatbot, msg = client.reduce_token_size(chatbot=chatbot)
# print(chatbot, msg)
# print(f"总结后history: {client.history}")
|