T2I-Adapter-SDXL / app_base.py
valhalla's picture
Update app_base.py
f572681
raw
history blame
5.09 kB
#!/usr/bin/env python
import gradio as gr
import PIL.Image
from model import ADAPTER_NAMES, Model
from utils import MAX_SEED, randomize_seed_fn, styles, style_names, apply_style
default_style_name = "Photographic"
def create_demo(model: Model) -> gr.Blocks:
def run(
image: PIL.Image.Image,
prompt: str,
negative_prompt: str,
adapter_name: str,
style_name: str = default_style_name,
num_inference_steps: int = 30,
guidance_scale: float = 5.0,
adapter_conditioning_scale: float = 1.0,
cond_tau: float = 1.0,
seed: int = 0,
apply_preprocess: bool = True,
progress=gr.Progress(track_tqdm=True),
) -> list[PIL.Image.Image]:
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
return model.run(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
adapter_name=adapter_name,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
adapter_conditioning_scale=adapter_conditioning_scale,
cond_tau=cond_tau,
seed=seed,
apply_preprocess=apply_preprocess,
)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Group():
image = gr.Image(label="Input image", type="pil", height=600)
prompt = gr.Textbox(label="Prompt")
adapter_name = gr.Dropdown(label="Adapter", choices=ADAPTER_NAMES, value=ADAPTER_NAMES[0])
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
apply_preprocess = gr.Checkbox(label="Apply preprocess", value=True)
negative_prompt = gr.Textbox(
label="Negative prompt",
value="",
)
style = gr.Dropdown(choices=style_names, value=default_style_name, label="Style")
num_inference_steps = gr.Slider(
label="Number of steps",
minimum=1,
maximum=Model.MAX_NUM_INFERENCE_STEPS,
step=1,
value=30,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=30.0,
step=0.1,
value=5.0,
)
adapter_conditioning_scale = gr.Slider(
label="Adapter Conditioning Scale",
minimum=0.5,
maximum=1,
step=0.1,
value=1.0,
)
cond_tau = gr.Slider(
label="Fraction of timesteps for which adapter should be applied",
minimum=0.5,
maximum=1.0,
step=0.1,
value=1.0,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
result = gr.Gallery(label="Result", columns=2, height=600, object_fit="scale-down", show_label=False)
inputs = [
image,
prompt,
negative_prompt,
adapter_name,
style,
num_inference_steps,
guidance_scale,
adapter_conditioning_scale,
cond_tau,
seed,
apply_preprocess,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name=False,
)
negative_prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=run,
inputs=inputs,
outputs=result,
api_name="run",
)
return demo
if __name__ == "__main__":
model = Model(ADAPTER_NAMES[0])
demo = create_demo(model)
demo.queue(max_size=20).launch()