Spaces:
Runtime error
Runtime error
File size: 14,964 Bytes
bcd81d6 c399026 ead7a82 c399026 968cca5 4bae2e1 c399026 71a8852 ead7a82 e77fc2d c399026 ead7a82 e77fc2d c399026 ead7a82 c399026 ead7a82 c399026 ead7a82 c399026 15991c1 c399026 ead7a82 e77fc2d ead7a82 c399026 ead7a82 e77fc2d ead7a82 c399026 ead7a82 c399026 e77fc2d c399026 e77fc2d ead7a82 c399026 ead7a82 c399026 ead7a82 c399026 ead7a82 c399026 15a96ee c399026 38d0ec4 c399026 2810e1b 1a96fe3 c399026 fbf732e c399026 5346203 872746b 1a96fe3 ac67fcd c399026 ead7a82 c399026 ead7a82 c399026 38ff6b6 1a96fe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import os
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.45.0")
import torch.cuda
import gradio as gr
import mdtex2html
import tempfile
from PIL import Image
import scipy
from llama.m2ugen import M2UGen
import llama
import numpy as np
import os
import torch
import torchaudio
import torchvision.transforms as transforms
import av
import subprocess
import librosa
import uuid
args = {"model": "./ckpts/checkpoint.pth", "llama_type": "7B", "llama_dir": "./ckpts/LLaMA-2",
"mert_path": "m-a-p/MERT-v1-330M", "vit_path": "google/vit-base-patch16-224", "vivit_path": "google/vivit-b-16x2-kinetics400",
"music_decoder": "musicgen", "music_decoder_path": "facebook/musicgen-medium"}
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
args = dotdict(args)
generated_audio_files = {}
llama_type = args.llama_type
llama_ckpt_dir = os.path.join(args.llama_dir, llama_type)
llama_tokenzier_path = args.llama_dir
model = M2UGen(llama_ckpt_dir, llama_tokenzier_path, args, knn=False, stage=None, load_llama=False)
print("Loading Model Checkpoint")
checkpoint = torch.load(args.model, map_location='cpu')
new_ckpt = {}
for key, value in checkpoint['model'].items():
if "generation_model" in key:
continue
key = key.replace("module.", "")
new_ckpt[key] = value
load_result = model.load_state_dict(new_ckpt, strict=False)
assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
model.eval()
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Lambda(lambda x: x.repeat(3, 1, 1) if x.size(0) == 1 else x)])
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text, image_path, video_path, audio_path):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
outputs = text
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines) + "<br>"
if image_path is not None:
text += f'<img src="./file={image_path}" style="display: inline-block;"><br>'
outputs = f'<Image>{image_path}</Image> ' + outputs
if video_path is not None:
text += f' <video controls playsinline height="320" width="240" style="display: inline-block;" src="./file={video_path}"></video6><br>'
outputs = f'<Video>{video_path}</Video> ' + outputs
if audio_path is not None:
text += f'<audio controls playsinline><source src="./file={audio_path}" type="audio/wav"></audio><br>'
outputs = f'<Audio>{audio_path}</Audio> ' + outputs
# text = text[::-1].replace(">rb<", "", 1)[::-1]
text = text[:-len("<br>")].rstrip() if text.endswith("<br>") else text
return text, outputs
def save_audio_to_local(uid, audio, sec):
global generated_audio_files
if not os.path.exists('temp'):
os.mkdir('temp')
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.wav')
if args.music_decoder == "audioldm2":
scipy.io.wavfile.write(filename, rate=16000, data=audio[0])
else:
scipy.io.wavfile.write(filename, rate=model.generation_model.config.audio_encoder.sampling_rate, data=audio)
generated_audio_files[uid].append(filename)
return filename
def parse_reponse(uid, model_outputs, audio_length_in_s):
response = ''
text_outputs = []
for output_i, p in enumerate(model_outputs):
if isinstance(p, str):
response += p.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
response += '<br>'
text_outputs.append(p.replace(' '.join([f'[AUD{i}]' for i in range(8)]), ''))
elif 'aud' in p.keys():
_temp_output = ''
for idx, m in enumerate(p['aud']):
if isinstance(m, str):
response += m.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
response += '<br>'
_temp_output += m.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
else:
filename = save_audio_to_local(uid, m, audio_length_in_s)
print(filename)
_temp_output = f'<Audio>{filename}</Audio> ' + _temp_output
response += f'<audio controls playsinline><source src="./file={filename}" type="audio/wav"></audio>'
text_outputs.append(_temp_output)
else:
pass
response = response[:-len("<br>")].rstrip() if response.endswith("<br>") else response
return response, text_outputs
def reset_user_input(uid):
return gr.update(value='')
def reset_dialog(uid):
global generated_audio_files
generated_audio_files[uid] = []
return [], []
def reset_state(uid):
global generated_audio_files
generated_audio_files[uid] = []
return None, None, None, None, [], [], []
def upload_image(conversation, chat_history, image_input):
input_image = Image.open(image_input.name).resize(
(224, 224)).convert('RGB')
input_image.save(image_input.name) # Overwrite with smaller image.
conversation += [(f'<img src="./file={image_input.name}" style="display: inline-block;">', "")]
return conversation, chat_history + [input_image, ""]
def read_video_pyav(container, indices):
frames = []
container.seek(0)
for i, frame in enumerate(container.decode(video=0)):
frames.append(frame)
chosen_frames = []
for i in indices:
chosen_frames.append(frames[i])
return np.stack([x.to_ndarray(format="rgb24") for x in chosen_frames])
def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
converted_len = int(clip_len * frame_sample_rate)
if converted_len > seg_len:
converted_len = 0
end_idx = np.random.randint(converted_len, seg_len)
start_idx = end_idx - converted_len
indices = np.linspace(start_idx, end_idx, num=clip_len)
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
return indices
def get_video_length(filename):
print("Getting Video Length")
result = subprocess.run(["ffprobe", "-v", "error", "-show_entries",
"format=duration", "-of",
"default=noprint_wrappers=1:nokey=1", filename],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
return int(round(float(result.stdout)))
def get_audio_length(filename):
return int(round(librosa.get_duration(path=filename)))
def predict(
uid,
prompt_input,
image_path,
audio_path,
video_path,
chatbot,
top_p,
temperature,
history,
modality_cache,
audio_length_in_s):
global generated_audio_files
prompts = [llama.format_prompt(prompt_input)]
prompts = [model.tokenizer(x).input_ids for x in prompts]
print(image_path, audio_path, video_path)
image, audio, video = None, None, None
if image_path is not None:
image = transform(Image.open(image_path))
if audio_path is not None:
sample_rate = 24000
waveform, sr = torchaudio.load(audio_path)
if sample_rate != sr:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
audio = torch.mean(waveform, 0)
if video_path is not None:
print("Opening Video")
container = av.open(video_path)
indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
video = read_video_pyav(container=container, indices=indices)
if uid in generated_audio_files and len(generated_audio_files[uid]) != 0:
sample_rate = 24000
waveform, sr = torchaudio.load(generated_audio_files[uid][-1])
if sample_rate != sr:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
audio = torch.mean(waveform, 0)
else:
generated_audio_files[uid] = []
print(image, video, audio)
response = model.generate(prompts, audio, image, video, 200, temperature, top_p,
audio_length_in_s=audio_length_in_s)
print(response)
response_chat, response_outputs = parse_reponse(uid, response, audio_length_in_s)
print('text_outputs: ', response_outputs)
user_chat, user_outputs = parse_text(prompt_input, image_path, video_path, audio_path)
chatbot.append((user_chat, response_chat))
history.append((user_outputs, ''.join(response_outputs).replace('\n###', '')))
return chatbot, history, modality_cache, None, None, None,
with gr.Blocks() as demo:
gr.HTML("""
<h1 align="center" style=" display: flex; flex-direction: row; justify-content: center; font-size: 25pt; "><img src='./file=bot.png' width="50" height="50" style="margin-right: 10px;">M<sup style="line-height: 200%; font-size: 60%">2</sup>UGen</h1>
<h3>This is the demo page of M<sup>2</sup>UGen, a Music Understanding and Generation model that is capable of Music Question Answering and also Music Generation from texts, images, videos and audios, as well as Music Editing.
The model utilizes encoders such as MERT for music understanding, ViT for image understanding and ViViT for video understanding and the MusicGen/AudioLDM2 model as the music generation model (music decoder), coupled with adapters and the LLaMA 2 model to make the model capable of multiple abilities!</h3>
<div style="display: flex;"><a href='https://crypto-code.github.io/M2UGen-Demo/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>       <a href='https://github.com/shansongliu/M2UGen'><img src='https://img.shields.io/badge/Github-Code-blue'></a>       <a href='https://arxiv.org/pdf/2311.11255.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
""")
with gr.Row():
with gr.Column(scale=0.7, min_width=500):
with gr.Row():
chatbot = gr.Chatbot(label='M2UGen Chatbot', avatar_images=(
(os.path.join(os.path.dirname(__file__), 'user.png')),
(os.path.join(os.path.dirname(__file__), "bot.png"))), height=440)
with gr.Tab("User Input"):
with gr.Row(scale=3):
user_input = gr.Textbox(label="Text", placeholder="Key in something here...", lines=3)
with gr.Row(scale=3):
with gr.Column(scale=1):
# image_btn = gr.UploadButton("πΌοΈ Upload Image", file_types=["image"])
image_path = gr.Image(type="filepath",
label="Image") # .style(height=200) # <PIL.Image.Image image mode=RGB size=512x512 at 0x7F6E06738D90>
with gr.Column(scale=1):
audio_path = gr.Audio(type='filepath') # .style(height=200)
with gr.Column(scale=1):
video_path = gr.Video() # .style(height=200) # , value=None, interactive=True
with gr.Column(scale=0.3, min_width=300):
with gr.Group():
with gr.Accordion('Text Advanced Options', open=True):
top_p = gr.Slider(0, 1, value=0.95, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.2, step=0.01, label="Temperature", interactive=True)
with gr.Accordion('Audio Advanced Options', open=False):
audio_length_in_s = gr.Slider(5, 180, value=180, step=1, label="The audio length in seconds",
interactive=True)
with gr.Tab("Operation"):
with gr.Row(scale=1):
submitBtn = gr.Button(value="Submit & Run", variant="primary")
with gr.Row(scale=1):
emptyBtn = gr.Button("Clear History")
history = gr.State([])
modality_cache = gr.State([])
uid = gr.State(uuid.uuid4())
gr.Examples(inputs=[user_input, image_path, audio_path, video_path],
examples=[["Generate a music to match the image", "./examples/drums.webp", None, None],
["Generate a music to match the mood of the black and white image", "./examples/sad.jpeg", None, None],
["Generate a music using the instrument in the image", "./examples/guitar.jpeg", None, None],
["Replace the piano in the music with an acoustic guitar", None, "./examples/piano.mp3", None],
["Extract the drums from the following music", None, "./examples/drums.mp3", None]])
submitBtn.click(
predict, [
uid,
user_input,
image_path,
audio_path,
video_path,
chatbot,
top_p,
temperature,
history,
modality_cache,
audio_length_in_s
], [
chatbot,
history,
modality_cache,
image_path,
audio_path,
video_path
],
show_progress=True
)
submitBtn.click(reset_user_input, [uid], [user_input])
emptyBtn.click(reset_state, [uid], outputs=[
image_path,
audio_path,
video_path,
chatbot,
history,
modality_cache
], show_progress=True)
if __name__ == "__main__":
demo.launch()
|