Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# This software may be used and distributed according to the terms of the GNU General Public License version 3. | |
import torch | |
from torch import nn | |
from torch.nn import Embedding, Linear | |
import torch.nn.functional as F | |
import math | |
from dataclasses import dataclass | |
from typing import Any, Optional, Tuple | |
class ModelArgs: | |
dim: int = 4096 | |
n_layers: int = 32 | |
n_heads: int = 32 | |
n_kv_heads: Optional[int] = None | |
vocab_size: int = -1 # defined later by tokenizer | |
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 | |
ffn_dim_multiplier: Optional[float] = None | |
norm_eps: float = 1e-5 | |
max_batch_size: int = 1 | |
max_seq_len: int = 2048 | |
w_bias: bool = True # use bias tuning | |
w_lora: bool = True # use lora tuning | |
lora_rank: int = 16 | |
num_output_tokens: int = 128 | |
output_dim_tokens: int = 768 | |
num_gen_audio_tokens: int = 8 | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-6): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
t = torch.arange(end, device=freqs.device) # type: ignore | |
freqs = torch.outer(t, freqs).float() # type: ignore | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 | |
return freqs_cis | |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
ndim = x.ndim | |
assert 0 <= 1 < ndim | |
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) | |
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
return freqs_cis.view(*shape) | |
def apply_rotary_emb( | |
xq: torch.Tensor, | |
xk: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) | |
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) | |
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) | |
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) | |
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) | |
return xq_out.type_as(xq), xk_out.type_as(xk) | |
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: | |
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)""" | |
bs, slen, n_kv_heads, head_dim = x.shape | |
if n_rep == 1: | |
return x | |
return ( | |
x[:, :, :, None, :] | |
.expand(bs, slen, n_kv_heads, n_rep, head_dim) | |
.reshape(bs, slen, n_kv_heads * n_rep, head_dim) | |
) | |
class Attention(nn.Module): | |
def __init__(self, args: ModelArgs): | |
super().__init__() | |
self.args = args | |
self.n_local_heads = args.n_heads | |
self.n_kv_heads = args.n_kv_heads | |
self.head_dim = args.dim // args.n_heads | |
self.wq = Linear( | |
args.dim, | |
args.n_heads * self.head_dim, | |
bias=args.w_bias | |
) | |
self.wk = Linear( | |
args.dim, | |
args.n_heads * self.head_dim, | |
bias=False | |
) | |
self.wv = Linear( | |
args.dim, | |
args.n_heads * self.head_dim, | |
bias=False | |
) | |
self.wo = Linear( | |
args.n_heads * self.head_dim, | |
args.dim, | |
bias=args.w_bias | |
) | |
if args.w_bias: | |
nn.init.constant_(self.wq.bias.data, 0) | |
nn.init.constant_(self.wo.bias.data, 0) | |
self.w_lora = args.w_lora | |
if args.w_lora: | |
self.lora_wq_l1 = Linear(args.dim, args.lora_rank, bias=False) | |
self.lora_wq_l2 = Linear(args.lora_rank, args.dim, bias=False) | |
self.lora_wk_l1 = Linear(args.dim, args.lora_rank, bias=False) | |
self.lora_wk_l2 = Linear(args.lora_rank, args.dim, bias=False) | |
self.lora_wv_l1 = Linear(args.dim, args.lora_rank, bias=False) | |
self.lora_wv_l2 = Linear(args.lora_rank, args.dim, bias=False) | |
self.lora_wo_l1 = Linear(args.dim, args.lora_rank, bias=False) | |
self.lora_wo_l2 = Linear(args.lora_rank, args.dim, bias=False) | |
nn.init.constant_(self.lora_wq_l2.weight.data, 0) | |
nn.init.constant_(self.lora_wk_l2.weight.data, 0) | |
nn.init.constant_(self.lora_wv_l2.weight.data, 0) | |
nn.init.constant_(self.lora_wo_l2.weight.data, 0) | |
self.cache_k = None | |
self.cache_v = None | |
self.gate = torch.nn.Parameter(torch.zeros(1, self.n_local_heads, 1, 1)) | |
def train(self, mode: bool = True): | |
if mode: | |
self.cache_k = None | |
self.cache_v = None | |
else: | |
self.cache_k = torch.zeros( | |
(self.args.max_batch_size, self.args.max_seq_len, self.n_local_heads, self.head_dim) | |
).cuda() | |
self.cache_v = torch.zeros( | |
(self.args.max_batch_size, self.args.max_seq_len, self.n_local_heads, self.head_dim) | |
).cuda() | |
return super().train(mode) | |
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], | |
adapter=None): | |
bsz, seqlen, _ = x.shape | |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) | |
if self.w_lora: | |
xq = xq + self.lora_wq_l2(self.lora_wq_l1(x)) | |
xk = xk + self.lora_wk_l2(self.lora_wk_l1(x)) | |
xv = xv + self.lora_wv_l2(self.lora_wv_l1(x)) | |
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim) | |
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) | |
if not self.training: | |
self.cache_k = self.cache_k.to(xq) | |
self.cache_v = self.cache_v.to(xq) | |
self.cache_k[:bsz, start_pos: start_pos + seqlen] = xk | |
self.cache_v[:bsz, start_pos: start_pos + seqlen] = xv | |
keys = self.cache_k[:bsz, : start_pos + seqlen] | |
values = self.cache_v[:bsz, : start_pos + seqlen] | |
else: | |
assert start_pos == 0 | |
keys = xk | |
values = xv | |
if adapter is not None: | |
adapter_len = adapter.shape[1] | |
adapter_v = self.wv(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim) | |
adapter_v = adapter_v.transpose(1, 2) | |
if adapter_len > 1: | |
adapter_k = self.wk(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim) | |
adapter_k = adapter_k.transpose(1, 2) | |
xq = xq.transpose(1, 2) | |
keys = keys.transpose(1, 2) | |
values = values.transpose(1, 2) | |
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if mask is not None: | |
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen) | |
scores = F.softmax(scores.float(), dim=-1).type_as(xq) | |
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim) | |
if adapter is not None: | |
if adapter_len > 1: | |
adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim) | |
adapter_scores = self.gate.tanh() * F.softmax(adapter_scores.float(), dim=-1).type_as(xq) | |
output = output + torch.matmul(adapter_scores, adapter_v) | |
else: | |
output = output + self.gate.tanh() * adapter_v | |
output = output.transpose( | |
1, 2 | |
).contiguous().view(bsz, seqlen, -1) | |
if self.w_lora: | |
return self.wo(output) + self.lora_wo_l2(self.lora_wo_l1(output)) | |
else: | |
return self.wo(output) | |
class FeedForward(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
hidden_dim: int, | |
multiple_of: int, | |
args: ModelArgs, | |
ffn_dim_multiplier: Optional[float] | |
): | |
super().__init__() | |
hidden_dim = int(2 * hidden_dim / 3) | |
if ffn_dim_multiplier is not None: | |
hidden_dim = int(ffn_dim_multiplier * hidden_dim) | |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
self.w1 = Linear( | |
dim, hidden_dim, bias=args.w_bias | |
) | |
self.w2 = Linear( | |
hidden_dim, dim, bias=args.w_bias | |
) | |
self.w3 = Linear( | |
dim, hidden_dim, bias=args.w_bias | |
) | |
if args.w_bias: | |
nn.init.constant_(self.w1.bias.data, 0) | |
nn.init.constant_(self.w2.bias.data, 0) | |
nn.init.constant_(self.w3.bias.data, 0) | |
self.w_lora = args.w_lora | |
if args.w_lora: | |
self.lora_w1_l1 = Linear(dim, args.lora_rank, bias=False) | |
self.lora_w1_l2 = Linear(args.lora_rank, hidden_dim, bias=False) | |
self.lora_w2_l1 = Linear(hidden_dim, args.lora_rank, bias=False) | |
self.lora_w2_l2 = Linear(args.lora_rank, dim, bias=False) | |
self.lora_w3_l1 = Linear(dim, args.lora_rank, bias=False) | |
self.lora_w3_l2 = Linear(args.lora_rank, hidden_dim, bias=False) | |
nn.init.constant_(self.lora_w1_l2.weight.data, 0) | |
nn.init.constant_(self.lora_w2_l2.weight.data, 0) | |
nn.init.constant_(self.lora_w3_l2.weight.data, 0) | |
def forward(self, x): | |
if self.w_lora: | |
out = F.silu(self.w1(x) + self.lora_w1_l2(self.lora_w1_l1(x))) * ( | |
self.w3(x) + self.lora_w3_l2(self.lora_w3_l1(x))) | |
return self.w2(out) + self.lora_w2_l2(self.lora_w2_l1(out)) | |
else: | |
return self.w2(F.silu(self.w1(x)) * self.w3(x)) | |
class TransformerBlock(nn.Module): | |
def __init__(self, layer_id: int, args: ModelArgs): | |
super().__init__() | |
self.n_heads = args.n_heads | |
self.dim = args.dim | |
self.head_dim = args.dim // args.n_heads | |
self.attention = Attention(args) | |
self.feed_forward = FeedForward( | |
dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of, | |
ffn_dim_multiplier=args.ffn_dim_multiplier, args=args | |
) | |
self.layer_id = layer_id | |
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) | |
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) | |
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], | |
prompt=None): | |
h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask, prompt) | |
out = h + self.feed_forward.forward(self.ffn_norm(h)) | |
return out | |
class Transformer(nn.Module): | |
def __init__(self, params: ModelArgs): | |
super().__init__() | |
self.params = params | |
self.vocab_size = params.vocab_size | |
self.n_layers = params.n_layers | |
self.tok_embeddings = Embedding( | |
params.vocab_size, params.dim | |
) | |
self.layers = torch.nn.ModuleList() | |
for layer_id in range(params.n_layers): | |
self.layers.append(TransformerBlock(layer_id, params)) | |
self.norm = RMSNorm(params.dim, eps=params.norm_eps) | |
self.output = Linear( | |
params.dim, params.vocab_size, bias=False | |
) | |
self.freqs_cis = precompute_freqs_cis( | |
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2 | |
) | |
def forward(self, tokens: torch.Tensor, start_pos: int): | |
_bsz, seqlen = tokens.shape | |
h = self.tok_embeddings(tokens) | |
self.freqs_cis = self.freqs_cis.to(h.device) | |
freqs_cis = self.freqs_cis[start_pos: start_pos + seqlen] | |
mask = None | |
if seqlen > 1: | |
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device) | |
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h) | |
for layer in self.layers: | |
h = layer(h, start_pos, freqs_cis, mask) | |
h = self.norm(h) | |
output = self.output(h) # only compute last logits | |
return output.float() | |