import sys
import os

sys.path.append(os.getcwd())

import time
import random
from tqdm import tqdm
import argparse

import torch
import torchaudio
from accelerate import Accelerator
from vocos import Vocos

from model import CFM, UNetT, DiT
from model.utils import (
    load_checkpoint,
    get_tokenizer,
    get_seedtts_testset_metainfo,
    get_librispeech_test_clean_metainfo,
    get_inference_prompt,
)

accelerator = Accelerator()
device = f"cuda:{accelerator.process_index}"


# --------------------- Dataset Settings -------------------- #

target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1

tokenizer = "pinyin"


# ---------------------- infer setting ---------------------- #

parser = argparse.ArgumentParser(description="batch inference")

parser.add_argument("-s", "--seed", default=None, type=int)
parser.add_argument("-d", "--dataset", default="Emilia_ZH_EN")
parser.add_argument("-n", "--expname", required=True)
parser.add_argument("-c", "--ckptstep", default=1200000, type=int)

parser.add_argument("-nfe", "--nfestep", default=32, type=int)
parser.add_argument("-o", "--odemethod", default="euler")
parser.add_argument("-ss", "--swaysampling", default=-1, type=float)

parser.add_argument("-t", "--testset", required=True)

args = parser.parse_args()


seed = args.seed
dataset_name = args.dataset
exp_name = args.expname
ckpt_step = args.ckptstep
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt"

nfe_step = args.nfestep
ode_method = args.odemethod
sway_sampling_coef = args.swaysampling

testset = args.testset


infer_batch_size = 1  # max frames. 1 for ddp single inference (recommended)
cfg_strength = 2.0
speed = 1.0
use_truth_duration = False
no_ref_audio = False


if exp_name == "F5TTS_Base":
    model_cls = DiT
    model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)

elif exp_name == "E2TTS_Base":
    model_cls = UNetT
    model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)


if testset == "ls_pc_test_clean":
    metalst = "data/librispeech_pc_test_clean_cross_sentence.lst"
    librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean"  # test-clean path
    metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)

elif testset == "seedtts_test_zh":
    metalst = "data/seedtts_testset/zh/meta.lst"
    metainfo = get_seedtts_testset_metainfo(metalst)

elif testset == "seedtts_test_en":
    metalst = "data/seedtts_testset/en/meta.lst"
    metainfo = get_seedtts_testset_metainfo(metalst)


# path to save genereted wavs
if seed is None:
    seed = random.randint(-10000, 10000)
output_dir = (
    f"results/{exp_name}_{ckpt_step}/{testset}/"
    f"seed{seed}_{ode_method}_nfe{nfe_step}"
    f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
    f"_cfg{cfg_strength}_speed{speed}"
    f"{'_gt-dur' if use_truth_duration else ''}"
    f"{'_no-ref-audio' if no_ref_audio else ''}"
)


# -------------------------------------------------#

use_ema = True

prompts_all = get_inference_prompt(
    metainfo,
    speed=speed,
    tokenizer=tokenizer,
    target_sample_rate=target_sample_rate,
    n_mel_channels=n_mel_channels,
    hop_length=hop_length,
    target_rms=target_rms,
    use_truth_duration=use_truth_duration,
    infer_batch_size=infer_batch_size,
)

# Vocoder model
local = False
if local:
    vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
    vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
    state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", weights_only=True, map_location=device)
    vocos.load_state_dict(state_dict)
    vocos.eval()
else:
    vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")

# Tokenizer
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)

# Model
model = CFM(
    transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
    mel_spec_kwargs=dict(
        target_sample_rate=target_sample_rate,
        n_mel_channels=n_mel_channels,
        hop_length=hop_length,
    ),
    odeint_kwargs=dict(
        method=ode_method,
    ),
    vocab_char_map=vocab_char_map,
).to(device)

model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)

if not os.path.exists(output_dir) and accelerator.is_main_process:
    os.makedirs(output_dir)

# start batch inference
accelerator.wait_for_everyone()
start = time.time()

with accelerator.split_between_processes(prompts_all) as prompts:
    for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process):
        utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt
        ref_mels = ref_mels.to(device)
        ref_mel_lens = torch.tensor(ref_mel_lens, dtype=torch.long).to(device)
        total_mel_lens = torch.tensor(total_mel_lens, dtype=torch.long).to(device)

        # Inference
        with torch.inference_mode():
            generated, _ = model.sample(
                cond=ref_mels,
                text=final_text_list,
                duration=total_mel_lens,
                lens=ref_mel_lens,
                steps=nfe_step,
                cfg_strength=cfg_strength,
                sway_sampling_coef=sway_sampling_coef,
                no_ref_audio=no_ref_audio,
                seed=seed,
            )
        # Final result
        for i, gen in enumerate(generated):
            gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
            gen_mel_spec = gen.permute(0, 2, 1)
            generated_wave = vocos.decode(gen_mel_spec.cpu())
            if ref_rms_list[i] < target_rms:
                generated_wave = generated_wave * ref_rms_list[i] / target_rms
            torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)

accelerator.wait_for_everyone()
if accelerator.is_main_process:
    timediff = time.time() - start
    print(f"Done batch inference in {timediff / 60 :.2f} minutes.")