import os
import torch
import gradio as gr
import numpy as np
import os.path as op
import pyarabic.araby as araby

from artst.tasks.artst import ArTSTTask
from transformers import SpeechT5HifiGan
from artst.models.artst import ArTSTTransformerModel
from fairseq.tasks.hubert_pretraining import LabelEncoder
from fairseq.data.audio.speech_to_text_dataset import get_features_or_waveform 

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint = torch.load('ckpts/clartts_tts.pt')
checkpoint['cfg']['task'].t5_task = 't2s'
checkpoint['cfg']['task'].bpe_tokenizer = "utils/arabic.model"
checkpoint['cfg']['task'].data = "utils/"
checkpoint['cfg']['model'].mask_prob = 0.5
checkpoint['cfg']['task'].mask_prob = 0.5
task = ArTSTTask.setup_task(checkpoint['cfg']['task'])

emb_path='embs/clartts.npy'
model = ArTSTTransformerModel.build_model(checkpoint['cfg']['model'], task)
model.load_state_dict(checkpoint['model'])

checkpoint['cfg']['task'].bpe_tokenizer = task.build_bpe(checkpoint['cfg']['model'])
tokenizer = checkpoint['cfg']['task'].bpe_tokenizer

processor = LabelEncoder(task.dicts['text'])

vocoder = SpeechT5HifiGan.from_pretrained('microsoft/speecht5_hifigan').to(device)

def get_embs(emb_path):
    spkembs = get_features_or_waveform(emb_path)
    spkembs = torch.from_numpy(spkembs).float().unsqueeze(0)
    return spkembs

def process_text(text):
    text = araby.strip_diacritics(text)
    return processor(tokenizer.encode(text)).reshape(1, -1)

net_input = {}

def inference(text, spkr=emb_path):
    if len(text.strip()) == 0:
        return (16000, np.zeros(0).astype(np.int16))
    net_input['src_tokens'] = process_text(text)
    net_input['spkembs'] = get_embs(spkr)
    outs, _, attn = task.generate_speech(
            [model], 
            net_input,
        )
    with torch.no_grad():
        gen_audio = vocoder(outs.to(device))
    speech = (gen_audio.cpu().numpy() * 32767).astype(np.int16)
    return (16000,speech)

text_box = gr.Textbox(max_lines=2, label="Arabic Text", rtl=True)
out = gr.Audio(label="Synthesized Audio", type="numpy")
title="ArTST: Arabic Speech Synthesis"
description="ArTST: Arabic text and speech transformer based on the T5 transformer. This space demonstarates the TTS checkpoint finetuned on \
    the Classical Arabic Text-To-Speech (CLARTTS) dataset. The model is pre-trained on the MGB-2 dataset."

examples=["لأن فراق المألوف في العادة ومجانبة ما صار متفقا عليه بالمواضعة",\
    "ومن لطيف حكمته أن جعل لكل عبادة حالتين",\
    "فمن لهم عدل الإنسان مع من فوقه"]

article = """
<div style='margin:20px auto;'>
<p>References: <a href="https://arxiv.org/abs/2310.16621">ArTST paper</a> |
<a href="https://github.com/mbzuai-nlp/ArTST">GitHub</a> |
<a href="https://huggingface.co/MBZUAI/ArTST">Weights and Tokenizer</a></p>
<pre>
@inproceedings{toyin-etal-2023-artst,
    title = "{A}r{TST}: {A}rabic Text and Speech Transformer",
    author = "Toyin, Hawau  and
      Djanibekov, Amirbek  and
      Kulkarni, Ajinkya  and
      Aldarmaki, Hanan",
    editor = "Sawaf, Hassan  and
      El-Beltagy, Samhaa  and
      Zaghouani, Wajdi  and
      Magdy, Walid  and
      Abdelali, Ahmed  and
      Tomeh, Nadi  and
      Abu Farha, Ibrahim  and
      Habash, Nizar  and
      Khalifa, Salam  and
      Keleg, Amr  and
      Haddad, Hatem  and
      Zitouni, Imed  and
      Mrini, Khalil  and
      Almatham, Rawan",
    booktitle = "Proceedings of ArabicNLP 2023",
    month = dec,
    year = "2023",
    address = "Singapore (Hybrid)",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.arabicnlp-1.5",
    pages = "41--51"
}
</pre>
<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a>.</p>
<p>ArTST is based on <a href="https://arxiv.org/abs/2110.07205">SpeechT5 architecture</a>.</p>
</div>
"""

demo = gr.Interface(inference, \
    inputs=text_box, outputs=out, title=title, description=description, examples=examples, article=article)

if __name__ == "__main__":
    demo.launch(share=True)