File size: 6,416 Bytes
fea0eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70a55a5
31e4f52
 
fea0eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31e4f52
 
fea0eb7
70a55a5
 
31e4f52
70a55a5
 
 
31e4f52
 
fea0eb7
 
 
70a55a5
fea0eb7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
<!DOCTYPE html>
<html lang="en">

<head>
    <meta charset="UTF-8">
    <title>Image Classification - Hugging Face Transformers.js</title>

    <script type="module">
        // Import the library
        import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.5.4';

        // Make it available globally
        window.pipeline = pipeline;
    </script>

    <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.0/dist/css/bootstrap.min.css" rel="stylesheet">

    <link rel="stylesheet" href="css/styles.css">
</head>

<body>
    <div class="container-main">

        <!-- Back to Home button -->
        <div class="row mt-5">
            <div class="col-md-12 text-center">
                <a href="index.html" class="btn btn-outline-secondary"
                    style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a>
            </div>
        </div>

        <!-- Content -->
        <div class="container mt-5">
            <!-- Centered Titles -->
            <div class="text-center">
                <h2>Computer Vision</h2>
                <h4>Image Classification</h4>
            </div>

            <!-- Actual Content of this page -->
            <div id="image-classification-container" class="container mt-4">
                <h5>Classify an Image:</h5>
                <div class="d-flex align-items-center">
                    <label for="imageClassificationURLText" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter
                        image URL:</label>
                    <input type="text" class="form-control flex-grow-1" id="imageClassificationURLText"
                        value="https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg"
                        placeholder="Enter image" style="margin-right: 15px; margin-left: 15px;">
                    <button id="ClassifyButton" class="btn btn-primary" onclick="classifyImage()">Classify</button>
                </div>
                <div class="mt-4">
                    <h4>Output:</h4>
                    <pre id="outputArea"></pre>
                </div>
            </div>

            <hr> <!-- Line Separator -->

            <div id="image-classification-local-container" class="container mt-4">
                <h5>Classify a Local Image:</h5>
                <div class="d-flex align-items-center">
                    <label for="imageClassificationLocalFile" class="mb-0 text-nowrap"
                        style="margin-right: 15px;">Select Local Image:</label>
                    <input type="file" id="imageClassificationLocalFile" accept="image/*" />
                    <button id="ClassifyButtonLocal" class="btn btn-primary"
                        onclick="classifyImageLocal()">Classify</button>
                </div>
                <div class="mt-4">
                    <h4>Output:</h4>
                    <pre id="outputAreaLocal"></pre>
                </div>
            </div>

            <hr> <!-- Line Separator -->

            <div id="image-classification-top-container" class="container mt-4">
                <h5>Classify an Image and Return Top n Classes:</h5>
                <div class="d-flex align-items-center">
                    <label for="imageClassificationTopURLText" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter
                        image URL:</label>
                    <input type="text" class="form-control flex-grow-1" id="imageClassificationTopURLText"
                        value="https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg"
                        placeholder="Enter image" style="margin-right: 15px; margin-left: 15px;">
                    <button id="ClassifyTopButton" class="btn btn-primary" onclick="classifyTopImage()">Classify</button>
                </div>
                <div class="mt-4">
                    <h4>Output:</h4>
                    <pre id="outputAreaTop"></pre>
                </div>
            </div>

            <!-- Back to Home button -->
            <div class="row mt-5">
                <div class="col-md-12 text-center">
                    <a href="index.html" class="btn btn-outline-secondary"
                        style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a>
                </div>
            </div>
        </div>
    </div>

    <script>

        let classifier;

        // Initialize the sentiment analysis model
        async function initializeModel() {
           // TO-Do: pipeline() 함수를 사용하여 ViT 모델 인스턴스를 classifier라는 이름으로 생성하십시오/
         classifier = await pipeline('zero-shot-image-classification', 'Xenova/clip-vit-base-patch32');
          
        }

        async function classifyImage() {
            const textFieldValue = document.getElementById("imageClassificationURLText").value.trim();

            const result = await classifier(textFieldValue);

            document.getElementById("outputArea").innerText = JSON.stringify(result, null, 2);
        }

        async function classifyImageLocal() {
            const fileInput = document.getElementById("imageClassificationLocalFile");
            const file = fileInput.files[0];

            if (!file) {
                alert('Please select an image file first.');
                return;
            }

            // Create a Blob URL from the file
            const url = URL.createObjectURL(file);
            const labels = document.getElementById("labelsLocalText").value.trim().split(",").map(item => item.trim());


            // classifier에 url을 입력하여 출력되는 결과를 result에 저장하십시오.
            // 힌트: cont result = ???
            const result = await classifier(url, labels);
            
            // HTML코드 중 element Id가 'outputAreaLocal'인 요소에 resul의 값을 JSON string 형태로 text로 출력하십시오.
            // 힌트: document.getElementById와 JSON.stringify 이용
                  document.getElementById("outputAreaLocal").innerText = JSON.stringify(result, null, 2);

        }

        async function classifyTopImage() {
            // 코드 삭제됨
        }

        // Initialize the model after the DOM is completely loaded
        window.addEventListener("DOMContentLoaded", initializeModel);
    </script>
</body>

</html>