Spaces:
Runtime error
Runtime error
import argparse | |
import inspect | |
from . import gaussian_diffusion as gd | |
from .respace import SpacedDiffusion, space_timesteps | |
from .unet import SuperResModel, UNetModel, EncoderUNetModel | |
NUM_CLASSES = 1000 | |
def diffusion_defaults(): | |
""" | |
Defaults for image and classifier training. | |
""" | |
return dict( | |
learn_sigma=False, | |
diffusion_steps=1000, | |
noise_schedule="linear", | |
timestep_respacing="", | |
use_kl=False, | |
predict_xstart=False, | |
rescale_timesteps=False, | |
rescale_learned_sigmas=False, | |
) | |
def classifier_defaults(): | |
""" | |
Defaults for classifier models. | |
""" | |
return dict( | |
image_size=64, | |
classifier_use_fp16=False, | |
classifier_width=128, | |
classifier_depth=2, | |
classifier_attention_resolutions="32,16,8", # 16 | |
classifier_use_scale_shift_norm=True, # False | |
classifier_resblock_updown=True, # False | |
classifier_pool="attention", | |
) | |
def model_and_diffusion_defaults(): | |
""" | |
Defaults for image training. | |
""" | |
res = dict( | |
image_size=64, | |
num_channels=128, | |
num_res_blocks=2, | |
num_heads=4, | |
num_heads_upsample=-1, | |
num_head_channels=-1, | |
attention_resolutions="16,8", | |
channel_mult="", | |
dropout=0.0, | |
p2_gamma=0, | |
p2_k=1, | |
class_cond=False, | |
use_checkpoint=False, | |
use_scale_shift_norm=True, | |
resblock_updown=False, | |
use_fp16=False, | |
use_new_attention_order=False, | |
) | |
res.update(diffusion_defaults()) | |
return res | |
def classifier_and_diffusion_defaults(): | |
res = classifier_defaults() | |
res.update(diffusion_defaults()) | |
return res | |
def create_model_and_diffusion( | |
image_size, | |
class_cond, | |
learn_sigma, | |
num_channels, | |
num_res_blocks, | |
channel_mult, | |
num_heads, | |
num_head_channels, | |
num_heads_upsample, | |
attention_resolutions, | |
dropout, | |
p2_gamma, | |
p2_k, | |
diffusion_steps, | |
noise_schedule, | |
timestep_respacing, | |
use_kl, | |
predict_xstart, | |
rescale_timesteps, | |
rescale_learned_sigmas, | |
use_checkpoint, | |
use_scale_shift_norm, | |
resblock_updown, | |
use_fp16, | |
use_new_attention_order, | |
): | |
model = create_model( | |
image_size, | |
num_channels, | |
num_res_blocks, | |
channel_mult=channel_mult, | |
learn_sigma=learn_sigma, | |
class_cond=class_cond, | |
use_checkpoint=use_checkpoint, | |
attention_resolutions=attention_resolutions, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dropout=dropout, | |
resblock_updown=resblock_updown, | |
use_fp16=use_fp16, | |
use_new_attention_order=use_new_attention_order, | |
) | |
diffusion = create_gaussian_diffusion( | |
steps=diffusion_steps, | |
learn_sigma=learn_sigma, | |
noise_schedule=noise_schedule, | |
use_kl=use_kl, | |
predict_xstart=predict_xstart, | |
rescale_timesteps=rescale_timesteps, | |
rescale_learned_sigmas=rescale_learned_sigmas, | |
timestep_respacing=timestep_respacing, | |
p2_gamma=p2_gamma, | |
p2_k=p2_k, | |
) | |
return model, diffusion | |
def create_model( | |
image_size, | |
num_channels, | |
num_res_blocks, | |
channel_mult="", | |
learn_sigma=False, | |
class_cond=False, | |
use_checkpoint=False, | |
attention_resolutions="16", | |
num_heads=1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
dropout=0, | |
resblock_updown=False, | |
use_fp16=False, | |
use_new_attention_order=False, | |
): | |
if channel_mult == "": | |
if image_size == 512: | |
channel_mult = (0.5, 1, 1, 2, 2, 4, 4) | |
elif image_size == 256: | |
channel_mult = (1, 1, 2, 2, 4, 4) | |
elif image_size == 128: | |
channel_mult = (1, 1, 2, 3, 4) | |
elif image_size == 64: | |
channel_mult = (1, 2, 3, 4) | |
else: | |
raise ValueError(f"unsupported image size: {image_size}") | |
else: | |
channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(",")) | |
attention_ds = [] | |
for res in attention_resolutions.split(","): | |
attention_ds.append(image_size // int(res)) | |
return UNetModel( | |
image_size=image_size, | |
in_channels=3, | |
model_channels=num_channels, | |
out_channels=(3 if not learn_sigma else 6), | |
num_res_blocks=num_res_blocks, | |
attention_resolutions=tuple(attention_ds), | |
dropout=dropout, | |
channel_mult=channel_mult, | |
num_classes=(NUM_CLASSES if class_cond else None), | |
use_checkpoint=use_checkpoint, | |
use_fp16=use_fp16, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
resblock_updown=resblock_updown, | |
use_new_attention_order=use_new_attention_order, | |
) | |
def create_classifier_and_diffusion( | |
image_size, | |
classifier_use_fp16, | |
classifier_width, | |
classifier_depth, | |
classifier_attention_resolutions, | |
classifier_use_scale_shift_norm, | |
classifier_resblock_updown, | |
classifier_pool, | |
learn_sigma, | |
diffusion_steps, | |
noise_schedule, | |
timestep_respacing, | |
use_kl, | |
predict_xstart, | |
rescale_timesteps, | |
rescale_learned_sigmas, | |
): | |
classifier = create_classifier( | |
image_size, | |
classifier_use_fp16, | |
classifier_width, | |
classifier_depth, | |
classifier_attention_resolutions, | |
classifier_use_scale_shift_norm, | |
classifier_resblock_updown, | |
classifier_pool, | |
) | |
diffusion = create_gaussian_diffusion( | |
steps=diffusion_steps, | |
learn_sigma=learn_sigma, | |
noise_schedule=noise_schedule, | |
use_kl=use_kl, | |
predict_xstart=predict_xstart, | |
rescale_timesteps=rescale_timesteps, | |
rescale_learned_sigmas=rescale_learned_sigmas, | |
timestep_respacing=timestep_respacing, | |
) | |
return classifier, diffusion | |
def create_classifier( | |
image_size, | |
classifier_use_fp16, | |
classifier_width, | |
classifier_depth, | |
classifier_attention_resolutions, | |
classifier_use_scale_shift_norm, | |
classifier_resblock_updown, | |
classifier_pool, | |
): | |
if image_size == 512: | |
channel_mult = (0.5, 1, 1, 2, 2, 4, 4) | |
elif image_size == 256: | |
channel_mult = (1, 1, 2, 2, 4, 4) | |
elif image_size == 128: | |
channel_mult = (1, 1, 2, 3, 4) | |
elif image_size == 64: | |
channel_mult = (1, 2, 3, 4) | |
else: | |
raise ValueError(f"unsupported image size: {image_size}") | |
attention_ds = [] | |
for res in classifier_attention_resolutions.split(","): | |
attention_ds.append(image_size // int(res)) | |
return EncoderUNetModel( | |
image_size=image_size, | |
in_channels=3, | |
model_channels=classifier_width, | |
out_channels=1000, | |
num_res_blocks=classifier_depth, | |
attention_resolutions=tuple(attention_ds), | |
channel_mult=channel_mult, | |
use_fp16=classifier_use_fp16, | |
num_head_channels=64, | |
use_scale_shift_norm=classifier_use_scale_shift_norm, | |
resblock_updown=classifier_resblock_updown, | |
pool=classifier_pool, | |
) | |
def sr_model_and_diffusion_defaults(): | |
res = model_and_diffusion_defaults() | |
res["large_size"] = 256 | |
res["small_size"] = 64 | |
arg_names = inspect.getfullargspec(sr_create_model_and_diffusion)[0] | |
for k in res.copy().keys(): | |
if k not in arg_names: | |
del res[k] | |
return res | |
def sr_create_model_and_diffusion( | |
large_size, | |
small_size, | |
class_cond, | |
learn_sigma, | |
num_channels, | |
num_res_blocks, | |
num_heads, | |
num_head_channels, | |
num_heads_upsample, | |
attention_resolutions, | |
dropout, | |
diffusion_steps, | |
noise_schedule, | |
timestep_respacing, | |
use_kl, | |
predict_xstart, | |
rescale_timesteps, | |
rescale_learned_sigmas, | |
use_checkpoint, | |
use_scale_shift_norm, | |
resblock_updown, | |
use_fp16, | |
p2_gamma, | |
p2_k, | |
): | |
model = sr_create_model( | |
large_size, | |
small_size, | |
num_channels, | |
num_res_blocks, | |
learn_sigma=learn_sigma, | |
class_cond=class_cond, | |
use_checkpoint=use_checkpoint, | |
attention_resolutions=attention_resolutions, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dropout=dropout, | |
resblock_updown=resblock_updown, | |
use_fp16=use_fp16, | |
) | |
diffusion = create_gaussian_diffusion( | |
steps=diffusion_steps, | |
learn_sigma=learn_sigma, | |
noise_schedule=noise_schedule, | |
use_kl=use_kl, | |
predict_xstart=predict_xstart, | |
rescale_timesteps=rescale_timesteps, | |
rescale_learned_sigmas=rescale_learned_sigmas, | |
timestep_respacing=timestep_respacing, | |
p2_gamma=p2_gamma, | |
p2_k=p2_k, | |
) | |
return model, diffusion | |
def sr_create_model( | |
large_size, | |
small_size, | |
num_channels, | |
num_res_blocks, | |
learn_sigma, | |
class_cond, | |
use_checkpoint, | |
attention_resolutions, | |
num_heads, | |
num_head_channels, | |
num_heads_upsample, | |
use_scale_shift_norm, | |
dropout, | |
resblock_updown, | |
use_fp16, | |
): | |
_ = small_size # hack to prevent unused variable | |
if large_size == 512: | |
channel_mult = (1, 1, 2, 2, 4, 4) | |
elif large_size == 256: | |
channel_mult = (1, 1, 2, 2, 4, 4) | |
elif large_size == 64: | |
channel_mult = (1, 2, 3, 4) | |
else: | |
raise ValueError(f"unsupported large size: {large_size}") | |
attention_ds = [] | |
for res in attention_resolutions.split(","): | |
attention_ds.append(large_size // int(res)) | |
return SuperResModel( | |
image_size=large_size, | |
in_channels=3, | |
model_channels=num_channels, | |
out_channels=(3 if not learn_sigma else 6), | |
num_res_blocks=num_res_blocks, | |
attention_resolutions=tuple(attention_ds), | |
dropout=dropout, | |
channel_mult=channel_mult, | |
num_classes=(NUM_CLASSES if class_cond else None), | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
resblock_updown=resblock_updown, | |
use_fp16=use_fp16, | |
) | |
def create_gaussian_diffusion( | |
*, | |
steps=1000, | |
learn_sigma=False, | |
sigma_small=False, | |
noise_schedule="linear", | |
use_kl=False, | |
predict_xstart=False, | |
rescale_timesteps=False, | |
rescale_learned_sigmas=False, | |
timestep_respacing="", | |
p2_gamma=0, | |
p2_k=1, | |
): | |
betas = gd.get_named_beta_schedule(noise_schedule, steps) | |
if use_kl: | |
loss_type = gd.LossType.RESCALED_KL | |
elif rescale_learned_sigmas: | |
loss_type = gd.LossType.RESCALED_MSE | |
else: | |
loss_type = gd.LossType.MSE | |
if not timestep_respacing: | |
timestep_respacing = [steps] | |
return SpacedDiffusion( | |
use_timesteps=space_timesteps(steps, timestep_respacing), | |
betas=betas, | |
model_mean_type=( | |
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X | |
), | |
model_var_type=( | |
( | |
gd.ModelVarType.FIXED_LARGE | |
if not sigma_small | |
else gd.ModelVarType.FIXED_SMALL | |
) | |
if not learn_sigma | |
else gd.ModelVarType.LEARNED_RANGE | |
), | |
loss_type=loss_type, | |
rescale_timesteps=rescale_timesteps, | |
p2_gamma=p2_gamma, | |
p2_k=p2_k, | |
) | |
def add_dict_to_argparser(parser, default_dict): | |
for k, v in default_dict.items(): | |
v_type = type(v) | |
if v is None: | |
v_type = str | |
elif isinstance(v, bool): | |
v_type = str2bool | |
parser.add_argument(f"--{k}", default=v, type=v_type) | |
def args_to_dict(args, keys): | |
return {k: getattr(args, k) for k in keys} | |
def str2bool(v): | |
""" | |
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse | |
""" | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ("yes", "true", "t", "y", "1"): | |
return True | |
elif v.lower() in ("no", "false", "f", "n", "0"): | |
return False | |
else: | |
raise argparse.ArgumentTypeError("boolean value expected") | |