File size: 22,691 Bytes
0fdcb79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Protein data type."""
import dataclasses
import io
from typing import Any, Sequence, Mapping, Optional
import re
import string

from dockformerpp.utils import residue_constants
from Bio.PDB import PDBParser
import numpy as np
import modelcif
import modelcif.model
import modelcif.dumper
import modelcif.reference
import modelcif.protocol
import modelcif.alignment
import modelcif.qa_metric


FeatureDict = Mapping[str, np.ndarray]
PICO_TO_ANGSTROM = 0.01

PDB_CHAIN_IDS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
PDB_MAX_CHAINS = len(PDB_CHAIN_IDS)
assert(PDB_MAX_CHAINS == 62)


@dataclasses.dataclass(frozen=True)
class Protein:
    """Protein structure representation."""

    # Cartesian coordinates of atoms in angstroms. The atom types correspond to
    # residue_constants.atom_types, i.e. the first three are N, CA, CB.
    atom_positions: np.ndarray  # [num_res, num_atom_type, 3]

    # Amino-acid type for each residue represented as an integer between 0 and
    # 20, where 20 is 'X'.
    aatype: np.ndarray  # [num_res]

    # Binary float mask to indicate presence of a particular atom. 1.0 if an atom
    # is present and 0.0 if not. This should be used for loss masking.
    atom_mask: np.ndarray  # [num_res, num_atom_type]

    # Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
    residue_index: np.ndarray  # [num_res]

    # B-factors, or temperature factors, of each residue (in sq. angstroms units),
    # representing the displacement of the residue from its ground truth mean
    # value.
    b_factors: np.ndarray  # [num_res, num_atom_type]

    # Chain indices for multi-chain predictions
    chain_index: Optional[np.ndarray] = None

    # Optional remark about the protein. Included as a comment in output PDB
    # files
    remark: Optional[str] = None

    # Templates used to generate this protein (prediction-only)
    parents: Optional[Sequence[str]] = None

    # Chain corresponding to each parent
    parents_chain_index: Optional[Sequence[int]] = None

    def __post_init__(self):
        if(len(np.unique(self.chain_index)) > PDB_MAX_CHAINS):
            raise ValueError(
                f"Cannot build an instance with more than {PDB_MAX_CHAINS} "
                "chains because these cannot be written to PDB format"
            )


def from_pdb_string(pdb_str: str, chain_id: Optional[str] = None) -> Protein:
    """Takes a PDB string and constructs a Protein object.

    WARNING: All non-standard residue types will be converted into UNK. All
      non-standard atoms will be ignored.

    Args:
      pdb_str: The contents of the pdb file
      chain_id: If None, then the whole pdb file is parsed. If chain_id is specified (e.g. A), then only that chain
        is parsed.

    Returns:
      A new `Protein` parsed from the pdb contents.
    """
    pdb_fh = io.StringIO(pdb_str)
    parser = PDBParser(QUIET=True)
    structure = parser.get_structure("none", pdb_fh)
    models = list(structure.get_models())
    if len(models) != 1:
        raise ValueError(
            f"Only single model PDBs are supported. Found {len(models)} models."
        )
    model = models[0]

    atom_positions = []
    aatype = []
    atom_mask = []
    residue_index = []
    chain_ids = []
    b_factors = []

    for chain in model:
        if(chain_id is not None and chain.id != chain_id):
            continue

        for res in chain:
            if res.id[2] != " ":
                raise ValueError(
                    f"PDB contains an insertion code at chain {chain.id} and residue "
                    f"index {res.id[1]}. These are not supported."
                )

            res_shortname = residue_constants.restype_3to1.get(res.resname, "X")
            if res_shortname not in residue_constants.restypes:
                print("Unknown residue type, skipping", res.resname)
                continue

            restype_idx = residue_constants.restype_order.get(
                res_shortname, residue_constants.restype_num
            )
            pos = np.zeros((residue_constants.atom_type_num, 3))
            mask = np.zeros((residue_constants.atom_type_num,))
            res_b_factors = np.zeros((residue_constants.atom_type_num,))
            for atom in res:
                if atom.name not in residue_constants.atom_types:
                    continue
                pos[residue_constants.atom_order[atom.name]] = atom.coord
                mask[residue_constants.atom_order[atom.name]] = 1.0
                res_b_factors[
                    residue_constants.atom_order[atom.name]
                ] = atom.bfactor
            if np.sum(mask) < 0.5:
                # If no known atom positions are reported for the residue then skip it.
                continue

            aatype.append(restype_idx)
            atom_positions.append(pos)
            atom_mask.append(mask)
            residue_index.append(res.id[1])
            chain_ids.append(chain.id)
            b_factors.append(res_b_factors)

    parents = None
    parents_chain_index = None
    if("PARENT" in pdb_str):
        parents = []
        parents_chain_index = []
        chain_id = 0
        for l in pdb_str.split("\n"):
            if("PARENT" in l):
                if(not "N/A" in l):
                    parent_names = l.split()[1:]
                    parents.extend(parent_names)
                    parents_chain_index.extend([
                        chain_id for _ in parent_names
                    ])
                chain_id += 1

    unique_chain_ids = np.unique(chain_ids)
    chain_id_mapping = {cid: n for n, cid in enumerate(string.ascii_uppercase + string.digits + string.ascii_lowercase)}
    chain_index = np.array([chain_id_mapping[cid] for cid in chain_ids])

    return Protein(
        atom_positions=np.array(atom_positions),
        atom_mask=np.array(atom_mask),
        aatype=np.array(aatype),
        residue_index=np.array(residue_index),
        chain_index=chain_index,
        b_factors=np.array(b_factors),
        parents=parents,
        parents_chain_index=parents_chain_index,
    )


def from_proteinnet_string(proteinnet_str: str) -> Protein:
    tag_re = r'(\[[A-Z]+\]\n)'
    tags = [
        tag.strip() for tag in re.split(tag_re, proteinnet_str) if len(tag) > 0
    ]
    groups = zip(tags[0::2], [l.split('\n') for l in tags[1::2]])

    atoms = ['N', 'CA', 'C']
    aatype = None
    atom_positions = None
    atom_mask = None
    for g in groups:
        if("[PRIMARY]" == g[0]):
            seq = g[1][0].strip()
            for i in range(len(seq)):
                if(seq[i] not in residue_constants.restypes):
                    seq[i] = 'X'
            aatype = np.array([
                residue_constants.restype_order.get(
                    res_symbol, residue_constants.restype_num
                ) for res_symbol in seq
            ])
        elif("[TERTIARY]" == g[0]):
            tertiary = []
            for axis in range(3):
                tertiary.append(list(map(float, g[1][axis].split())))
            tertiary_np = np.array(tertiary)
            atom_positions = np.zeros(
                (len(tertiary[0])//3, residue_constants.atom_type_num, 3)
            ).astype(np.float32)
            for i, atom in enumerate(atoms):
                atom_positions[:, residue_constants.atom_order[atom], :] = (
                    np.transpose(tertiary_np[:, i::3])
                )
            atom_positions *= PICO_TO_ANGSTROM
        elif("[MASK]" == g[0]):
            mask = np.array(list(map({'-': 0, '+': 1}.get, g[1][0].strip())))
            atom_mask = np.zeros(
                (len(mask), residue_constants.atom_type_num,)
            ).astype(np.float32)
            for i, atom in enumerate(atoms):
                atom_mask[:, residue_constants.atom_order[atom]] = 1
            atom_mask *= mask[..., None]

    return Protein(
        atom_positions=atom_positions,
        atom_mask=atom_mask,
        aatype=aatype,
        residue_index=np.arange(len(aatype)),
        b_factors=None,
    )


def _chain_end(atom_index, end_resname, chain_name, residue_index) -> str:
    chain_end = 'TER'
    return(
        f'{chain_end:<6}{atom_index:>5}      {end_resname:>3} '
        f'{chain_name:>1}{residue_index:>4}'
    )


def get_pdb_headers(prot: Protein, chain_id: int = 0) -> Sequence[str]:
    pdb_headers = []

    remark = prot.remark
    if(remark is not None):
        pdb_headers.append(f"REMARK {remark}")

    parents = prot.parents
    parents_chain_index = prot.parents_chain_index
    if(parents_chain_index is not None):
        parents = [
            p for i, p in zip(parents_chain_index, parents) if i == chain_id
        ]

    if(parents is None or len(parents) == 0):
        parents = ["N/A"]

    pdb_headers.append(f"PARENT {' '.join(parents)}")

    return pdb_headers


def add_pdb_headers(prot: Protein, pdb_str: str) -> str:
    """ Add pdb headers to an existing PDB string. Useful during multi-chain
        recycling
    """
    out_pdb_lines = []
    lines = pdb_str.split('\n')

    remark = prot.remark
    if(remark is not None):
        out_pdb_lines.append(f"REMARK {remark}")

    parents_per_chain = None
    if(prot.parents is not None and len(prot.parents) > 0):
        parents_per_chain = []
        if(prot.parents_chain_index is not None):
            cur_chain = prot.parents_chain_index[0]
            parent_dict = {}
            for p, i in zip(prot.parents, prot.parents_chain_index):
                parent_dict.setdefault(str(i), [])
                parent_dict[str(i)].append(p)

            max_idx = max([int(chain_idx) for chain_idx in parent_dict])
            for i in range(max_idx + 1):
                chain_parents = parent_dict.get(str(i), ["N/A"])
                parents_per_chain.append(chain_parents)
        else:
            parents_per_chain.append(prot.parents)
    else:
        parents_per_chain = [["N/A"]]

    make_parent_line = lambda p: f"PARENT {' '.join(p)}"

    out_pdb_lines.append(make_parent_line(parents_per_chain[0]))

    chain_counter = 0
    for i, l in enumerate(lines):
        if("PARENT" not in l and "REMARK" not in l):
            out_pdb_lines.append(l)
        if("TER" in l and not "END" in lines[i + 1]):
            chain_counter += 1
            if(not chain_counter >= len(parents_per_chain)):
                chain_parents = parents_per_chain[chain_counter]
            else:
                chain_parents = ["N/A"]

            out_pdb_lines.append(make_parent_line(chain_parents))

    return '\n'.join(out_pdb_lines)


def to_pdb(prot: Protein) -> str:
    """Converts a `Protein` instance to a PDB string.

    Args:
      prot: The protein to convert to PDB.

    Returns:
      PDB string.
    """
    restypes = residue_constants.restypes + ["X"]
    res_1to3 = lambda r: residue_constants.restype_1to3.get(restypes[r], "UNK")
    atom_types = residue_constants.atom_types

    pdb_lines = []

    atom_mask = prot.atom_mask
    aatype = prot.aatype
    atom_positions = prot.atom_positions
    residue_index = prot.residue_index.astype(np.int32)
    b_factors = prot.b_factors
    chain_index = prot.chain_index.astype(np.int32)

    if np.any(aatype > residue_constants.restype_num):
        raise ValueError("Invalid aatypes.")

    # Construct a mapping from chain integer indices to chain ID strings.
    chain_ids = {}
    for i in np.unique(chain_index): # np.unique gives sorted output.
        if i >= PDB_MAX_CHAINS:
            raise ValueError(
                f"The PDB format supports at most {PDB_MAX_CHAINS} chains."
            )
        chain_ids[i] = PDB_CHAIN_IDS[i]

    headers = get_pdb_headers(prot)
    if (len(headers) > 0):
        pdb_lines.extend(headers)

    pdb_lines.append("MODEL     1")
    n = aatype.shape[0]
    atom_index = 1
    last_chain_index = chain_index[0]
    prev_chain_index = 0
    chain_tags = string.ascii_uppercase

    # Add all atom sites.
    for i in range(aatype.shape[0]):
        # Close the previous chain if in a multichain PDB.
        if last_chain_index != chain_index[i]:
            pdb_lines.append(
                _chain_end(
                    atom_index, 
                    res_1to3(aatype[i - 1]), 
                    chain_ids[chain_index[i - 1]], 
                    residue_index[i - 1]
                )
            )
            last_chain_index = chain_index[i]
            atom_index += 1 # Atom index increases at the TER symbol.

        res_name_3 = res_1to3(aatype[i])
        for atom_name, pos, mask, b_factor in zip(
            atom_types, atom_positions[i], atom_mask[i], b_factors[i]
        ):
            if mask < 0.5:
                continue

            record_type = "ATOM"
            name = atom_name if len(atom_name) == 4 else f" {atom_name}"
            alt_loc = ""
            insertion_code = ""
            occupancy = 1.00
            element = atom_name[
                0
            ]  # Protein supports only C, N, O, S, this works.
            charge = ""

            chain_tag = "A"
            if(chain_index is not None):
                chain_tag = chain_tags[chain_index[i]]

            # PDB is a columnar format, every space matters here!
            atom_line = (
                f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
                #TODO: check this refactor, chose main branch version
                #f"{res_name_3:>3} {chain_ids[chain_index[i]]:>1}"
                f"{res_name_3:>3} {chain_tag:>1}"
                f"{residue_index[i]:>4}{insertion_code:>1}   "
                f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
                f"{occupancy:>6.2f}{b_factor:>6.2f}          "
                f"{element:>2}{charge:>2}"
            )
            pdb_lines.append(atom_line)
            atom_index += 1

        should_terminate = (i == n - 1)
        if(chain_index is not None):
            if(i != n - 1 and chain_index[i + 1] != prev_chain_index):
                should_terminate = True
                prev_chain_index = chain_index[i + 1]

        if(should_terminate):
            # Close the chain.
            chain_end = "TER"
            chain_termination_line = (
                f"{chain_end:<6}{atom_index:>5}      "
                f"{res_1to3(aatype[i]):>3} "
                f"{chain_tag:>1}{residue_index[i]:>4}"
            )
            pdb_lines.append(chain_termination_line)
            atom_index += 1

            if(i != n - 1):
                # "prev" is a misnomer here. This happens at the beginning of
                # each new chain.
                pdb_lines.extend(get_pdb_headers(prot, prev_chain_index))

    pdb_lines.append("ENDMDL")
    pdb_lines.append("END")

    # Pad all lines to 80 characters
    pdb_lines = [line.ljust(80) for line in pdb_lines]
    return '\n'.join(pdb_lines) + '\n' # Add terminating newline.


def to_modelcif(prot: Protein) -> str:
    """
    Converts a `Protein` instance to a ModelCIF string. Chains with identical modelled coordinates
    will be treated as the same polymer entity. But note that if chains differ in modelled regions,
    no attempt is made at identifying them as a single polymer entity.

    Args:
      prot: The protein to convert to PDB.

    Returns:
      ModelCIF string.
    """

    restypes = residue_constants.restypes + ["X"]
    atom_types = residue_constants.atom_types

    atom_mask = prot.atom_mask
    aatype = prot.aatype
    atom_positions = prot.atom_positions
    residue_index = prot.residue_index.astype(np.int32)
    b_factors = prot.b_factors
    chain_index = prot.chain_index

    n = aatype.shape[0]
    if chain_index is None:
        chain_index = [0 for i in range(n)]

    system = modelcif.System(title='Prediction')

    # Finding chains and creating entities
    seqs = {}
    seq = []
    last_chain_idx = None
    for i in range(n):
        if last_chain_idx is not None and last_chain_idx != chain_index[i]:
            seqs[last_chain_idx] = seq
            seq = []
        seq.append(restypes[aatype[i]])
        last_chain_idx = chain_index[i]
    # finally add the last chain
    seqs[last_chain_idx] = seq

    # now reduce sequences to unique ones (note this won't work if different asyms have different unmodelled regions)
    unique_seqs = {}
    for chain_idx, seq_list in seqs.items():
        seq = "".join(seq_list)
        if seq in unique_seqs:
            unique_seqs[seq].append(chain_idx)
        else:
            unique_seqs[seq] = [chain_idx]

    # adding 1 entity per unique sequence
    entities_map = {}
    for key, value in unique_seqs.items():
        model_e = modelcif.Entity(key, description='Model subunit')
        for chain_idx in value:
            entities_map[chain_idx] = model_e

    chain_tags = string.ascii_uppercase
    asym_unit_map = {}
    for chain_idx in set(chain_index):
        # Define the model assembly
        chain_id = chain_tags[chain_idx]
        asym = modelcif.AsymUnit(entities_map[chain_idx], details='Model subunit %s' % chain_id, id=chain_id)
        asym_unit_map[chain_idx] = asym
    modeled_assembly = modelcif.Assembly(asym_unit_map.values(), name='Modeled assembly')

    class _LocalPLDDT(modelcif.qa_metric.Local, modelcif.qa_metric.PLDDT):
        name = "pLDDT"
        software = None
        description = "Predicted lddt"

    class _GlobalPLDDT(modelcif.qa_metric.Global, modelcif.qa_metric.PLDDT):
        name = "pLDDT"
        software = None
        description = "Global pLDDT, mean of per-residue pLDDTs"

    class _MyModel(modelcif.model.AbInitioModel):
        def get_atoms(self):
            # Add all atom sites.
            for i in range(n):
                for atom_name, pos, mask, b_factor in zip(
                        atom_types, atom_positions[i], atom_mask[i], b_factors[i]
                ):
                    if mask < 0.5:
                        continue
                    element = atom_name[0]  # Protein supports only C, N, O, S, this works.
                    yield modelcif.model.Atom(
                        asym_unit=asym_unit_map[chain_index[i]], type_symbol=element,
                        seq_id=residue_index[i], atom_id=atom_name,
                        x=pos[0], y=pos[1], z=pos[2],
                        het=False, biso=b_factor, occupancy=1.00)

        def add_scores(self):
            # local scores
            plddt_per_residue = {}
            for i in range(n):
                for mask, b_factor in zip(atom_mask[i], b_factors[i]):
                    if mask < 0.5:
                        continue
                    # add 1 per residue, not 1 per atom
                    if chain_index[i] not in plddt_per_residue:
                        # first time a chain index is seen: add the key and start the residue dict
                        plddt_per_residue[chain_index[i]] = {residue_index[i]: b_factor}
                    if residue_index[i] not in plddt_per_residue[chain_index[i]]:
                        plddt_per_residue[chain_index[i]][residue_index[i]] = b_factor
            plddts = []
            for chain_idx in plddt_per_residue:
                for residue_idx in plddt_per_residue[chain_idx]:
                    plddt = plddt_per_residue[chain_idx][residue_idx]
                    plddts.append(plddt)
                    self.qa_metrics.append(
                        _LocalPLDDT(asym_unit_map[chain_idx].residue(residue_idx), plddt))
            # global score
            self.qa_metrics.append((_GlobalPLDDT(np.mean(plddts))))

    # Add the model and modeling protocol to the file and write them out:
    model = _MyModel(assembly=modeled_assembly, name='Best scoring model')
    model.add_scores()

    model_group = modelcif.model.ModelGroup([model], name='All models')
    system.model_groups.append(model_group)

    fh = io.StringIO()
    modelcif.dumper.write(fh, [system])
    return fh.getvalue()


def ideal_atom_mask(prot: Protein) -> np.ndarray:
    """Computes an ideal atom mask.

    `Protein.atom_mask` typically is defined according to the atoms that are
    reported in the PDB. This function computes a mask according to heavy atoms
    that should be present in the given sequence of amino acids.

    Args:
      prot: `Protein` whose fields are `numpy.ndarray` objects.

    Returns:
      An ideal atom mask.
    """
    return residue_constants.STANDARD_ATOM_MASK[prot.aatype]


def from_prediction(
    aatype: np.ndarray,
    residue_index: np.ndarray,
    chain_index: np.ndarray,
    atom_positions: np.ndarray,
    atom_mask: np.ndarray,
    b_factors: Optional[np.ndarray] = None,
    remove_leading_feature_dimension: bool = True,
    remark: Optional[str] = None,
    parents: Optional[Sequence[str]] = None,
    parents_chain_index: Optional[Sequence[int]] = None
) -> Protein:
    """Assembles a protein from a prediction.

    Args:
      features: Dictionary holding model inputs.
      result: Dictionary holding model outputs.
      b_factors: (Optional) B-factors to use for the protein.
      remove_leading_feature_dimension: Whether to remove the leading dimension 
        of the `features` values
      chain_index: (Optional) Chain indices for multi-chain predictions
      remark: (Optional) Remark about the prediction
      parents: (Optional) List of template names
    Returns:
      A protein instance.
    """
    def _maybe_remove_leading_dim(arr: np.ndarray) -> np.ndarray:
        return arr[0] if remove_leading_feature_dimension else arr

    chain_index = _maybe_remove_leading_dim(chain_index)

    if b_factors is None:
        b_factors = np.zeros_like(atom_mask)

    return Protein(
        aatype=_maybe_remove_leading_dim(aatype),
        atom_positions=atom_positions,
        atom_mask=atom_mask,
        residue_index=_maybe_remove_leading_dim(residue_index),
        b_factors=b_factors,
        chain_index=chain_index,
        remark=remark,
        parents=parents,
        parents_chain_index=parents_chain_index,
    )