DockFormerPP / dockformerpp /data /data_modules.py
bshor's picture
add code
0fdcb79
import copy
import itertools
import time
import traceback
from collections import Counter
from functools import partial
import json
import os
import pickle
from typing import Optional, Sequence, Any
import ml_collections as mlc
import lightning as L
import torch
from torch.utils.data import RandomSampler
from dockformerpp.data.data_pipeline import parse_input_json
from dockformerpp.data import data_pipeline
from dockformerpp.utils.tensor_utils import dict_multimap
from dockformerpp.utils.tensor_utils import (
tensor_tree_map,
)
class OpenFoldSingleDataset(torch.utils.data.Dataset):
def __init__(self,
data_dir: str,
config: mlc.ConfigDict,
mode: str = "train",
):
"""
Args:
data_dir:
A path to a directory containing mmCIF files (in train
mode) or FASTA files (in inference mode).
config:
A dataset config object. See openfold.config
mode:
"train", "val", or "predict"
"""
super(OpenFoldSingleDataset, self).__init__()
self.data_dir = data_dir
self.config = config
self.mode = mode
valid_modes = ["train", "eval", "predict"]
if mode not in valid_modes:
raise ValueError(f'mode must be one of {valid_modes}')
self._all_input_files = [i for i in os.listdir(data_dir) if i.endswith(".json")]
if self.config.data_module.data_loaders.should_verify:
self._all_input_files = [i for i in self._all_input_files if self._verify_json_input_file(i)]
self.data_pipeline = data_pipeline.DataPipeline(config, mode)
def _verify_json_input_file(self, file_name: str) -> bool:
with open(os.path.join(self.data_dir, file_name), "r") as f:
try:
loaded = json.load(f)
for i in ["input_structure"]:
if i not in loaded:
return False
if self.mode != "predict":
for i in ["gt_structure", "resolution"]:
if i not in loaded:
return False
except json.JSONDecodeError:
return False
return True
def get_metadata_for_idx(self, idx: int) -> dict:
input_path = os.path.join(self.data_dir, self._all_input_files[idx])
input_data = json.load(open(input_path, "r"))
metadata = {
"resolution": input_data.get("resolution", 99.0),
"input_path": input_path,
"input_name": os.path.basename(input_path).split(".json")[0],
}
return metadata
def __getitem__(self, idx):
return parse_input_json(
input_path=os.path.join(self.data_dir, self._all_input_files[idx]),
mode=self.mode,
config=self.config,
data_pipeline=self.data_pipeline,
data_dir=os.path.dirname(self.data_dir),
idx=idx,
)
def __len__(self):
return len(self._all_input_files)
def resolution_filter(resolution: int, max_resolution: float) -> bool:
"""Check that the resolution is <= max_resolution permitted"""
return resolution is not None and resolution <= max_resolution
def all_seq_len_filter(seqs: list, minimum_number_of_residues: int) -> bool:
"""Check if the total combined sequence lengths are >= minimum_numer_of_residues"""
total_len = sum([len(i) for i in seqs])
return total_len >= minimum_number_of_residues
class OpenFoldDataset(torch.utils.data.Dataset):
"""
Implements the stochastic filters applied during AlphaFold's training.
Because samples are selected from constituent datasets randomly, the
length of an OpenFoldFilteredDataset is arbitrary. Samples are selected
and filtered once at initialization.
"""
def __init__(self,
datasets: Sequence[OpenFoldSingleDataset],
probabilities: Sequence[float],
epoch_len: int,
generator: torch.Generator = None,
_roll_at_init: bool = True,
):
self.datasets = datasets
self.probabilities = probabilities
self.epoch_len = epoch_len
self.generator = generator
self._samples = [self.looped_samples(i) for i in range(len(self.datasets))]
if _roll_at_init:
self.reroll()
@staticmethod
def deterministic_train_filter(
cache_entry: Any,
max_resolution: float = 9.,
max_single_aa_prop: float = 0.8,
*args, **kwargs
) -> bool:
# Hard filters
resolution = cache_entry["resolution"]
return all([
resolution_filter(resolution=resolution,
max_resolution=max_resolution)
])
@staticmethod
def get_stochastic_train_filter_prob(
cache_entry: Any,
*args, **kwargs
) -> float:
# Stochastic filters
probabilities = []
cluster_size = cache_entry.get("cluster_size", None)
if cluster_size is not None and cluster_size > 0:
probabilities.append(1 / cluster_size)
# Risk of underflow here?
out = 1
for p in probabilities:
out *= p
return out
def looped_shuffled_dataset_idx(self, dataset_len):
while True:
# Uniformly shuffle each dataset's indices
weights = [1. for _ in range(dataset_len)]
shuf = torch.multinomial(
torch.tensor(weights),
num_samples=dataset_len,
replacement=False,
generator=self.generator,
)
for idx in shuf:
yield idx
def looped_samples(self, dataset_idx):
max_cache_len = int(self.epoch_len * self.probabilities[dataset_idx])
dataset = self.datasets[dataset_idx]
idx_iter = self.looped_shuffled_dataset_idx(len(dataset))
while True:
weights = []
idx = []
for _ in range(max_cache_len):
candidate_idx = next(idx_iter)
# chain_id = dataset.idx_to_chain_id(candidate_idx)
# chain_data_cache_entry = chain_data_cache[chain_id]
# data_entry = dataset[candidate_idx.item()]
entry_metadata_for_filter = dataset.get_metadata_for_idx(candidate_idx.item())
if not self.deterministic_train_filter(entry_metadata_for_filter):
continue
p = self.get_stochastic_train_filter_prob(
entry_metadata_for_filter,
)
weights.append([1. - p, p])
idx.append(candidate_idx)
samples = torch.multinomial(
torch.tensor(weights),
num_samples=1,
generator=self.generator,
)
samples = samples.squeeze()
cache = [i for i, s in zip(idx, samples) if s]
for datapoint_idx in cache:
yield datapoint_idx
def __getitem__(self, idx):
dataset_idx, datapoint_idx = self.datapoints[idx]
return self.datasets[dataset_idx][datapoint_idx]
def __len__(self):
return self.epoch_len
def reroll(self):
# TODO bshor: I have removed support for filters (currently done in preprocess) and to weighting clusters
# now it is much faster, because it doesn't call looped_samples
dataset_choices = torch.multinomial(
torch.tensor(self.probabilities),
num_samples=self.epoch_len,
replacement=True,
generator=self.generator,
)
self.datapoints = []
counter_datasets = Counter(dataset_choices.tolist())
for dataset_idx, num_samples in counter_datasets.items():
dataset = self.datasets[dataset_idx]
sample_choices = torch.randint(0, len(dataset), (num_samples,), generator=self.generator)
for datapoint_idx in sample_choices:
self.datapoints.append((dataset_idx, datapoint_idx))
class OpenFoldBatchCollator:
def __call__(self, prots):
stack_fn = partial(torch.stack, dim=0)
return dict_multimap(stack_fn, prots)
class OpenFoldDataLoader(torch.utils.data.DataLoader):
def __init__(self, *args, config, stage="train", generator=None, **kwargs):
super().__init__(*args, **kwargs)
self.config = config
self.stage = stage
self.generator = generator
self._prep_batch_properties_probs()
def _prep_batch_properties_probs(self):
keyed_probs = []
stage_cfg = self.config[self.stage]
max_iters = self.config.common.max_recycling_iters
if stage_cfg.uniform_recycling:
recycling_probs = [
1. / (max_iters + 1) for _ in range(max_iters + 1)
]
else:
recycling_probs = [
0. for _ in range(max_iters + 1)
]
recycling_probs[-1] = 1.
keyed_probs.append(
("no_recycling_iters", recycling_probs)
)
keys, probs = zip(*keyed_probs)
max_len = max([len(p) for p in probs])
padding = [[0.] * (max_len - len(p)) for p in probs]
self.prop_keys = keys
self.prop_probs_tensor = torch.tensor(
[p + pad for p, pad in zip(probs, padding)],
dtype=torch.float32,
)
def _add_batch_properties(self, batch):
# gt_features = batch.pop('gt_features', None)
samples = torch.multinomial(
self.prop_probs_tensor,
num_samples=1, # 1 per row
replacement=True,
generator=self.generator
)
aatype = batch["aatype"]
batch_dims = aatype.shape[:-2]
recycling_dim = aatype.shape[-1]
no_recycling = recycling_dim
for i, key in enumerate(self.prop_keys):
sample = int(samples[i][0])
sample_tensor = torch.tensor(
sample,
device=aatype.device,
requires_grad=False
)
orig_shape = sample_tensor.shape
sample_tensor = sample_tensor.view(
(1,) * len(batch_dims) + sample_tensor.shape + (1,)
)
sample_tensor = sample_tensor.expand(
batch_dims + orig_shape + (recycling_dim,)
)
batch[key] = sample_tensor
if key == "no_recycling_iters":
no_recycling = sample
resample_recycling = lambda t: t[..., :no_recycling + 1]
batch = tensor_tree_map(resample_recycling, batch)
# batch['gt_features'] = gt_features
return batch
def __iter__(self):
it = super().__iter__()
def _batch_prop_gen(iterator):
for batch in iterator:
yield self._add_batch_properties(batch)
return _batch_prop_gen(it)
class OpenFoldDataModule(L.LightningDataModule):
def __init__(self,
config: mlc.ConfigDict,
train_data_dir: Optional[str] = None,
val_data_dir: Optional[str] = None,
predict_data_dir: Optional[str] = None,
batch_seed: Optional[int] = None,
train_epoch_len: int = 50000,
**kwargs
):
super(OpenFoldDataModule, self).__init__()
self.config = config
self.train_data_dir = train_data_dir
self.val_data_dir = val_data_dir
self.predict_data_dir = predict_data_dir
self.batch_seed = batch_seed
self.train_epoch_len = train_epoch_len
if self.train_data_dir is None and self.predict_data_dir is None:
raise ValueError(
'At least one of train_data_dir or predict_data_dir must be '
'specified'
)
self.training_mode = self.train_data_dir is not None
# if not self.training_mode and predict_alignment_dir is None:
# raise ValueError(
# 'In inference mode, predict_alignment_dir must be specified'
# )
# elif val_data_dir is not None and val_alignment_dir is None:
# raise ValueError(
# 'If val_data_dir is specified, val_alignment_dir must '
# 'be specified as well'
# )
def setup(self, stage):
# Most of the arguments are the same for the three datasets
dataset_gen = partial(OpenFoldSingleDataset,
config=self.config)
if self.training_mode:
train_dataset = dataset_gen(
data_dir=self.train_data_dir,
mode="train",
)
datasets = [train_dataset]
probabilities = [1.]
generator = None
if self.batch_seed is not None:
generator = torch.Generator()
generator = generator.manual_seed(self.batch_seed + 1)
self.train_dataset = OpenFoldDataset(
datasets=datasets,
probabilities=probabilities,
epoch_len=self.train_epoch_len,
generator=generator,
_roll_at_init=False,
)
if self.val_data_dir is not None:
self.eval_dataset = dataset_gen(
data_dir=self.val_data_dir,
mode="eval",
)
else:
self.eval_dataset = None
else:
self.predict_dataset = dataset_gen(
data_dir=self.predict_data_dir,
mode="predict",
)
def _gen_dataloader(self, stage):
generator = None
if self.batch_seed is not None:
generator = torch.Generator()
generator = generator.manual_seed(self.batch_seed)
if stage == "train":
dataset = self.train_dataset
# Filter the dataset, if necessary
dataset.reroll()
elif stage == "eval":
dataset = self.eval_dataset
elif stage == "predict":
dataset = self.predict_dataset
else:
raise ValueError("Invalid stage")
batch_collator = OpenFoldBatchCollator()
dl = OpenFoldDataLoader(
dataset,
config=self.config,
stage=stage,
generator=generator,
batch_size=self.config.data_module.data_loaders.batch_size,
# num_workers=self.config.data_module.data_loaders.num_workers,
num_workers=0, # TODO bshor: solve generator pickling issue and then bring back num_workers, or just remove generator
collate_fn=batch_collator,
)
return dl
def train_dataloader(self):
return self._gen_dataloader("train")
def val_dataloader(self):
if self.eval_dataset is not None:
return self._gen_dataloader("eval")
return None
def predict_dataloader(self):
return self._gen_dataloader("predict")
class DummyDataset(torch.utils.data.Dataset):
def __init__(self, batch_path):
with open(batch_path, "rb") as f:
self.batch = pickle.load(f)
def __getitem__(self, idx):
return copy.deepcopy(self.batch)
def __len__(self):
return 1000
class DummyDataLoader(L.LightningDataModule):
def __init__(self, batch_path):
super().__init__()
self.dataset = DummyDataset(batch_path)
def train_dataloader(self):
return torch.utils.data.DataLoader(self.dataset)
class DockFormerSimpleDataset(torch.utils.data.Dataset):
def __init__(self, clusters_json: str, config: mlc.ConfigDict, mode: str = "train"):
clusters = json.load(open(clusters_json, "r"))
self.config = config
self.mode = mode
self._data_dir = os.path.dirname(clusters_json)
print("Data dir", self._data_dir)
self._clusters = clusters
self._all_input_files = sum(clusters.values(), [])
self.data_pipeline = data_pipeline.DataPipeline(config, mode)
def __getitem__(self, idx):
return parse_input_json(
input_path=os.path.join(self._data_dir, self._all_input_files[idx]),
mode=self.mode,
config=self.config,
data_pipeline=self.data_pipeline,
data_dir=self._data_dir,
idx=idx,
)
def __len__(self):
return len(self._all_input_files)
class DockFormerClusteredDataset(torch.utils.data.Dataset):
def __init__(self, clusters_json: str, config: mlc.ConfigDict, mode: str = "train", generator=None):
clusters = json.load(open(clusters_json, "r"))
self.config = config
self.mode = mode
self._data_dir = os.path.dirname(clusters_json)
self._clusters = list(clusters.values())
self.data_pipeline = data_pipeline.DataPipeline(config, mode)
self._generator = generator
def __getitem__(self, idx):
try:
cluster = self._clusters[idx]
# choose random from cluster
input_file = cluster[torch.randint(0, len(cluster), (1,), generator=self._generator).item()]
return parse_input_json(
input_path=os.path.join(self._data_dir, input_file),
mode=self.mode,
config=self.config,
data_pipeline=self.data_pipeline,
data_dir=self._data_dir,
idx=idx,
)
except Exception as e:
print("ERROR in loading", e)
traceback.print_exc()
return parse_input_json(
input_path=os.path.join(self._data_dir, self._clusters[0][0]),
mode=self.mode,
config=self.config,
data_pipeline=self.data_pipeline,
data_dir=self._data_dir,
idx=idx,
)
def __len__(self):
return len(self._clusters)
class DockFormerDataLoader(torch.utils.data.DataLoader):
def __init__(self, *args, config, stage="train", generator=None, **kwargs):
super().__init__(*args, **kwargs)
self.config = config
self.stage = stage
# self.generator = generator
def _add_batch_properties(self, batch):
if self.config[self.stage].uniform_recycling:
aatype = batch["aatype"]
max_recycling_dim = aatype.shape[-1]
# num_recycles = torch.randint(0, max_recycling_dim, (1,), generator=self.generator)
num_recycles = torch.randint(0, max_recycling_dim, (1,)).item()
resample_recycling = lambda t: t[..., :num_recycles + 1]
batch = tensor_tree_map(resample_recycling, batch)
return batch
def __iter__(self):
it = super().__iter__()
def _batch_prop_gen(iterator):
for batch in iterator:
yield self._add_batch_properties(batch)
return _batch_prop_gen(it)
class DockFormerDataModule(L.LightningDataModule):
def __init__(self,
config: mlc.ConfigDict,
train_data_file: Optional[str] = None,
val_data_file: Optional[str] = None,
batch_seed: Optional[int] = None,
**kwargs
):
super(DockFormerDataModule, self).__init__()
self.config = config
self.train_data_file = train_data_file
self.val_data_file = val_data_file
self.batch_seed = batch_seed
assert self.train_data_file is not None, "train_data_file must be specified"
assert self.val_data_file is not None, "val_data_file must be specified"
self.train_dataset = None
self.val_dataset = None
def setup(self, stage):
generator = None
if self.batch_seed is not None:
generator = torch.Generator()
generator = generator.manual_seed(self.batch_seed + 1)
self.train_dataset = DockFormerClusteredDataset(
clusters_json=self.train_data_file,
config=self.config,
mode="train",
generator=generator,
)
self.val_dataset = DockFormerSimpleDataset(
clusters_json=self.val_data_file,
config=self.config,
mode="eval",
)
def _gen_dataloader(self, stage):
generator = None
if self.batch_seed is not None:
generator = torch.Generator()
generator = generator.manual_seed(self.batch_seed)
should_shuffle = stage == "train"
if stage == "train":
dataset = self.train_dataset
elif stage == "eval":
dataset = self.val_dataset
else:
raise ValueError("Invalid stage")
batch_collator = OpenFoldBatchCollator()
dl = DockFormerDataLoader(
dataset,
config=self.config,
stage=stage,
# generator=generator,
batch_size=self.config.data_module.data_loaders.batch_size,
# num_workers=self.config.data_module.data_loaders.num_workers,
num_workers=0, # TODO bshor: solve generator pickling issue and then bring back num_workers, or just remove generator
collate_fn=batch_collator,
shuffle=should_shuffle,
)
return dl
def train_dataloader(self):
return self._gen_dataloader("train")
def val_dataloader(self):
if self.val_dataset is not None:
return self._gen_dataloader("eval")
return None