DockFormerPP / dockformerpp /data /data_pipeline.py
bshor's picture
add code
0fdcb79
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import time
from typing import List
import numpy as np
import torch
import ml_collections as mlc
from rdkit import Chem
from dockformerpp.data import data_transforms
from dockformerpp.data.data_transforms import get_restype_atom37_mask, get_restypes
from dockformerpp.data.protein_features import make_protein_features
from dockformerpp.data.utils import FeatureTensorDict, FeatureDict
from dockformerpp.utils import protein
def _np_filter_and_to_tensor_dict(np_example: FeatureDict, features_to_keep: List[str]) -> FeatureTensorDict:
"""Creates dict of tensors from a dict of NumPy arrays.
Args:
np_example: A dict of NumPy feature arrays.
features: A list of strings of feature names to be returned in the dataset.
Returns:
A dictionary of features mapping feature names to features. Only the given
features are returned, all other ones are filtered out.
"""
# torch generates warnings if feature is already a torch Tensor
to_tensor = lambda t: torch.tensor(t) if type(t) != torch.Tensor else t.clone().detach()
tensor_dict = {
k: to_tensor(v) for k, v in np_example.items() if k in features_to_keep
}
return tensor_dict
def _add_protein_probablistic_features(features: FeatureDict, cfg: mlc.ConfigDict, mode: str) -> FeatureDict:
if mode == "train":
p = torch.rand(1).item()
use_clamped_fape_value = float(p < cfg.supervised.clamp_prob)
features["use_clamped_fape"] = np.float32(use_clamped_fape_value)
else:
features["use_clamped_fape"] = np.float32(0.0)
return features
@data_transforms.curry1
def compose(x, fs):
for f in fs:
x = f(x)
return x
def _apply_protein_transforms(tensors: FeatureTensorDict) -> FeatureTensorDict:
transforms = [
data_transforms.cast_to_64bit_ints,
data_transforms.squeeze_features,
data_transforms.make_atom14_masks,
data_transforms.make_atom14_positions,
data_transforms.atom37_to_frames,
data_transforms.atom37_to_torsion_angles(""),
data_transforms.make_pseudo_beta(),
data_transforms.get_backbone_frames,
data_transforms.get_chi_angles,
]
tensors = compose(transforms)(tensors)
return tensors
def _apply_protein_probablistic_transforms(tensors: FeatureTensorDict, cfg: mlc.ConfigDict, mode: str) \
-> FeatureTensorDict:
transforms = [data_transforms.make_target_feat()]
crop_feats = dict(cfg.common.feat)
if cfg[mode].fixed_size:
transforms.append(data_transforms.select_feat(list(crop_feats)))
# TODO bshor: restore transforms for training on cropped proteins, need to handle pocket somehow
# if so, look for random_crop_to_size and make_fixed_size in data_transforms.py
compose(transforms)(tensors)
return tensors
class DataPipeline:
"""Assembles input features."""
def __init__(self, config: mlc.ConfigDict, mode: str):
self.config = config
self.mode = mode
self.feature_names = config.common.unsupervised_features
if config[mode].supervised:
self.feature_names += config.supervised.supervised_features
def process_pdb(self, pdb_path: str) -> FeatureTensorDict:
"""
Assembles features for a protein in a PDB file.
"""
with open(pdb_path, 'r') as f:
pdb_str = f.read()
protein_object = protein.from_pdb_string(pdb_str)
description = os.path.splitext(os.path.basename(pdb_path))[0].upper()
pdb_feats = make_protein_features(protein_object, description)
pdb_feats = _add_protein_probablistic_features(pdb_feats, self.config, self.mode)
tensor_feats = _np_filter_and_to_tensor_dict(pdb_feats, self.feature_names)
tensor_feats = _apply_protein_transforms(tensor_feats)
tensor_feats = _apply_protein_probablistic_transforms(tensor_feats, self.config, self.mode)
return tensor_feats
def _prepare_recycles(feat: torch.Tensor, num_recycles: int) -> torch.Tensor:
return feat.unsqueeze(-1).repeat(*([1] * len(feat.shape)), num_recycles)
def _fit_to_crop(target_tensor: torch.Tensor, crop_size: int, start_ind: int) -> torch.Tensor:
if len(target_tensor.shape) == 1:
ret = torch.zeros((crop_size, ), dtype=target_tensor.dtype)
ret[start_ind:start_ind + target_tensor.shape[0]] = target_tensor
return ret
elif len(target_tensor.shape) == 2:
ret = torch.zeros((crop_size, target_tensor.shape[-1]), dtype=target_tensor.dtype)
ret[start_ind:start_ind + target_tensor.shape[0], :] = target_tensor
return ret
else:
ret = torch.zeros((crop_size, *target_tensor.shape[1:]), dtype=target_tensor.dtype)
ret[start_ind:start_ind + target_tensor.shape[0], ...] = target_tensor
return ret
def parse_input_json(input_path: str, mode: str, config: mlc.ConfigDict, data_pipeline: DataPipeline,
data_dir: str, idx: int) -> FeatureTensorDict:
start_load_time = time.time()
input_data = json.load(open(input_path, "r"))
if mode == "train" or mode == "eval":
print("loading", input_data["pdb_id"], end=" ")
num_recycles = config.common.max_recycling_iters + 1
input_protein_r_feats = data_pipeline.process_pdb(pdb_path=os.path.join(data_dir, input_data["input_r_structure"]))
input_protein_l_feats = data_pipeline.process_pdb(pdb_path=os.path.join(data_dir, input_data["input_l_structure"]))
n_res_r = input_protein_r_feats["protein_target_feat"].shape[0]
n_res_l = input_protein_l_feats["protein_target_feat"].shape[0]
n_res_total = n_res_r + n_res_l
n_affinity = 1
# add 1 for affinity token
crop_size = n_res_total + n_affinity
if (mode == "train" or mode == "eval") and config.train.fixed_size:
crop_size = config.train.crop_size
assert crop_size >= n_res_total + n_affinity, f"crop_size: {crop_size}, n_res_r: {n_res_r}, n_res_l: {n_res_l}"
token_mask = torch.zeros((crop_size,), dtype=torch.float32)
token_mask[:n_res_total + n_affinity] = 1
protein_r_mask = torch.zeros((crop_size,), dtype=torch.float32)
protein_r_mask[:n_res_r] = 1
protein_l_mask = torch.zeros((crop_size,), dtype=torch.float32)
protein_l_mask[n_res_r:n_res_total] = 1
affinity_mask = torch.zeros((crop_size,), dtype=torch.float32)
affinity_mask[n_res_total] = 1
structural_mask = torch.zeros((crop_size,), dtype=torch.float32)
structural_mask[:n_res_total] = 1
inter_pair_mask = torch.zeros((crop_size, crop_size), dtype=torch.float32)
inter_pair_mask[:n_res_r, n_res_r:n_res_total] = 1
inter_pair_mask[n_res_r:n_res_total, :n_res_r] = 1
tf_dim = input_protein_r_feats["protein_target_feat"].shape[-1]
target_feat = torch.zeros((crop_size, tf_dim + 3), dtype=torch.float32)
target_feat[:n_res_r, :tf_dim] = input_protein_r_feats["protein_target_feat"]
target_feat[n_res_r:n_res_total, :tf_dim] = input_protein_l_feats["protein_target_feat"]
target_feat[:n_res_r, tf_dim] = 1 # Set "is_protein_r" flag for protein rows
target_feat[n_res_r:n_res_total, tf_dim + 1] = 1 # Set "is_protein_l" flag for ligand rows
target_feat[n_res_total, tf_dim + 2] = 1 # Set "is_affinity" flag for affinity row
input_positions = torch.zeros((crop_size, 3), dtype=torch.float32)
input_positions[:n_res_r] = input_protein_r_feats["pseudo_beta"]
input_positions[n_res_r:n_res_total] = input_protein_l_feats["pseudo_beta"]
distogram_mask = torch.zeros(crop_size)
if mode == "train":
ones_indices = torch.randperm(n_res_total)[:int(n_res_total * config.train.distogram_mask_prob)]
# print(ones_indices)
distogram_mask[ones_indices] = 1
input_positions = input_positions * (1 - distogram_mask).unsqueeze(-1)
elif mode == "predict":
# ignore all positions where pseudo_beta is 0, 0, 0
distogram_mask = (input_positions == 0).all(dim=-1).float()
# print("Ignoring residues", torch.nonzero(distogram_mask).flatten())
# Implement ligand as amino acid type 20
aatype = torch.cat([input_protein_r_feats["aatype"], input_protein_l_feats["aatype"]], dim=0)
residue_index = torch.cat([input_protein_r_feats["residue_index"], input_protein_l_feats["residue_index"]], dim=0)
residx_atom37_to_atom14 = torch.cat([input_protein_r_feats["residx_atom37_to_atom14"],
input_protein_l_feats["residx_atom37_to_atom14"]],
dim=0)
atom37_atom_exists = torch.cat([input_protein_r_feats["atom37_atom_exists"],
input_protein_l_feats["atom37_atom_exists"]], dim=0)
feats = {
"token_mask": token_mask,
"protein_r_mask": protein_r_mask,
"protein_l_mask": protein_l_mask,
"affinity_mask": affinity_mask,
"structural_mask": structural_mask,
"inter_pair_mask": inter_pair_mask,
"target_feat": target_feat,
"input_positions": input_positions,
"distogram_mask": distogram_mask,
"residue_index": _fit_to_crop(residue_index, crop_size, 0),
"aatype": _fit_to_crop(aatype, crop_size, 0),
"residx_atom37_to_atom14": _fit_to_crop(residx_atom37_to_atom14, crop_size, 0),
"atom37_atom_exists": _fit_to_crop(atom37_atom_exists, crop_size, 0),
}
if mode == "predict":
feats.update({
"in_chain_residue_index_r": input_protein_r_feats["in_chain_residue_index"],
"chain_index_r": input_protein_r_feats["chain_index"],
"in_chain_residue_index_l": input_protein_l_feats["in_chain_residue_index"],
"chain_index_l": input_protein_l_feats["chain_index"],
})
if mode == 'train' or mode == 'eval':
gt_protein_r_feats = data_pipeline.process_pdb(pdb_path=os.path.join(data_dir, input_data["gt_r_structure"]))
gt_protein_l_feats = data_pipeline.process_pdb(pdb_path=os.path.join(data_dir, input_data["gt_l_structure"]))
affinity_loss_factor = torch.tensor([1.0], dtype=torch.float32)
if input_data.get("affinity") is None:
eps = 1e-6
affinity_loss_factor = torch.tensor([eps], dtype=torch.float32)
affinity = torch.tensor([0.0], dtype=torch.float32)
else:
affinity = torch.tensor([input_data["affinity"]], dtype=torch.float32)
resolution = torch.tensor(input_data["resolution"], dtype=torch.float32)
# prepare inter_contacts
expanded_prot_r_pos = gt_protein_r_feats["pseudo_beta"].unsqueeze(1) # Shape: (n_res_r, 1, 3)
expanded_prot_l_pos = gt_protein_l_feats["pseudo_beta"].unsqueeze(0) # Shape: (1, n_res_l, 3)
distances = torch.sqrt(torch.sum((expanded_prot_r_pos - expanded_prot_l_pos) ** 2, dim=-1))
inter_contact = (distances < 8.0).float()
binding_site_mask_r = inter_contact.any(dim=1).float()
binding_site_mask_l = inter_contact.any(dim=0).float()
print("attaching binding masks", binding_site_mask_r.shape, binding_site_mask_l.shape)
binding_site_mask = torch.cat([binding_site_mask_r, binding_site_mask_l], dim=0)
inter_contact_reshaped_to_crop = torch.zeros((crop_size, crop_size), dtype=torch.float32)
inter_contact_reshaped_to_crop[:n_res_r, n_res_r:n_res_total] = inter_contact
inter_contact_reshaped_to_crop[n_res_r:n_res_total, :n_res_r] = inter_contact.T
# Use CA positions only
atom37_gt_positions = torch.cat([gt_protein_r_feats["all_atom_positions"],
gt_protein_l_feats["all_atom_positions"]], dim=0)
atom37_atom_exists_in_res = torch.cat([gt_protein_r_feats["atom37_atom_exists"],
gt_protein_l_feats["atom37_atom_exists"]], dim=0)
atom37_atom_exists_in_gt = torch.cat([gt_protein_r_feats["all_atom_mask"],
gt_protein_l_feats["all_atom_mask"]], dim=0)
atom14_gt_positions = torch.cat([gt_protein_r_feats["atom14_gt_positions"],
gt_protein_l_feats["atom14_gt_positions"]], dim=0)
atom14_atom_exists_in_res = torch.cat([gt_protein_r_feats["atom14_atom_exists"],
gt_protein_l_feats["atom14_atom_exists"]], dim=0)
atom14_atom_exists_in_gt = torch.cat([gt_protein_r_feats["atom14_gt_exists"],
gt_protein_l_feats["atom14_gt_exists"]], dim=0)
gt_pseudo_beta_joined = torch.cat([gt_protein_r_feats["pseudo_beta"], gt_protein_l_feats["pseudo_beta"]], dim=0)
gt_pseudo_beta_joined_mask = torch.cat([gt_protein_r_feats["pseudo_beta_mask"],
gt_protein_l_feats["pseudo_beta_mask"]], dim=0)
# IGNORES: residx_atom14_to_atom37, rigidgroups_group_exists,
# rigidgroups_group_is_ambiguous, pseudo_beta_mask, backbone_rigid_mask, protein_target_feat
gt_protein_feats = {
"atom37_gt_positions": atom37_gt_positions, # torch.Size([n_struct, 37, 3])
"atom37_atom_exists_in_res": atom37_atom_exists_in_res, # torch.Size([n_struct, 37])
"atom37_atom_exists_in_gt": atom37_atom_exists_in_gt, # torch.Size([n_struct, 37])
"atom14_gt_positions": atom14_gt_positions, # torch.Size([n_struct, 14, 3])
"atom14_atom_exists_in_res": atom14_atom_exists_in_res, # torch.Size([n_struct, 14])
"atom14_atom_exists_in_gt": atom14_atom_exists_in_gt, # torch.Size([n_struct, 14])
"gt_pseudo_beta_joined": gt_pseudo_beta_joined, # torch.Size([n_struct, 3])
"gt_pseudo_beta_joined_mask": gt_pseudo_beta_joined_mask, # torch.Size([n_struct])
# These we don't need to add the ligand to, because padding is sufficient (everything should be 0)
"atom14_alt_gt_positions": torch.cat([gt_protein_r_feats["atom14_alt_gt_positions"],
gt_protein_l_feats["atom14_alt_gt_positions"]], dim=0), # torch.Size([n_res, 14, 3])
"atom14_alt_gt_exists": torch.cat([gt_protein_r_feats["atom14_alt_gt_exists"],
gt_protein_l_feats["atom14_alt_gt_exists"]], dim=0), # torch.Size([n_res, 14])
"atom14_atom_is_ambiguous": torch.cat([gt_protein_r_feats["atom14_atom_is_ambiguous"],
gt_protein_l_feats["atom14_atom_is_ambiguous"]], dim=0), # torch.Size([n_res, 14])
"rigidgroups_gt_frames": torch.cat([gt_protein_r_feats["rigidgroups_gt_frames"],
gt_protein_l_feats["rigidgroups_gt_frames"]], dim=0), # torch.Size([n_res, 8, 4, 4])
"rigidgroups_gt_exists": torch.cat([gt_protein_r_feats["rigidgroups_gt_exists"],
gt_protein_l_feats["rigidgroups_gt_exists"]], dim=0), # torch.Size([n_res, 8])
"rigidgroups_alt_gt_frames": torch.cat([gt_protein_r_feats["rigidgroups_alt_gt_frames"],
gt_protein_l_feats["rigidgroups_alt_gt_frames"]], dim=0), # torch.Size([n_res, 8, 4, 4])
"backbone_rigid_tensor": torch.cat([gt_protein_r_feats["backbone_rigid_tensor"],
gt_protein_l_feats["backbone_rigid_tensor"]], dim=0), # torch.Size([n_res, 4, 4])
"backbone_rigid_mask": torch.cat([gt_protein_r_feats["backbone_rigid_mask"],
gt_protein_l_feats["backbone_rigid_mask"]], dim=0), # torch.Size([n_res])
"chi_angles_sin_cos": torch.cat([gt_protein_r_feats["chi_angles_sin_cos"],
gt_protein_l_feats["chi_angles_sin_cos"]], dim=0),
"chi_mask": torch.cat([gt_protein_r_feats["chi_mask"], gt_protein_l_feats["chi_mask"]], dim=0),
}
for k, v in gt_protein_feats.items():
gt_protein_feats[k] = _fit_to_crop(v, crop_size, 0)
feats = {
**feats,
**gt_protein_feats,
"resolution": resolution,
"affinity": affinity,
"affinity_loss_factor": affinity_loss_factor,
"seq_length": torch.tensor(n_res_total),
"binding_site_mask": _fit_to_crop(binding_site_mask, crop_size, 0),
"gt_inter_contacts": inter_contact_reshaped_to_crop,
}
for k, v in feats.items():
# print(k, v.shape)
feats[k] = _prepare_recycles(v, num_recycles)
feats["batch_idx"] = torch.tensor(
[idx for _ in range(crop_size)], dtype=torch.int64, device=feats["aatype"].device
)
print("load time", round(time.time() - start_load_time, 4))
return feats