Spaces:
Sleeping
Sleeping
# Copyright 2021 AlQuraishi Laboratory | |
# Copyright 2021 DeepMind Technologies Limited | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import time | |
from typing import List | |
import numpy as np | |
import torch | |
import ml_collections as mlc | |
from rdkit import Chem | |
from dockformerpp.data import data_transforms | |
from dockformerpp.data.data_transforms import get_restype_atom37_mask, get_restypes | |
from dockformerpp.data.protein_features import make_protein_features | |
from dockformerpp.data.utils import FeatureTensorDict, FeatureDict | |
from dockformerpp.utils import protein | |
def _np_filter_and_to_tensor_dict(np_example: FeatureDict, features_to_keep: List[str]) -> FeatureTensorDict: | |
"""Creates dict of tensors from a dict of NumPy arrays. | |
Args: | |
np_example: A dict of NumPy feature arrays. | |
features: A list of strings of feature names to be returned in the dataset. | |
Returns: | |
A dictionary of features mapping feature names to features. Only the given | |
features are returned, all other ones are filtered out. | |
""" | |
# torch generates warnings if feature is already a torch Tensor | |
to_tensor = lambda t: torch.tensor(t) if type(t) != torch.Tensor else t.clone().detach() | |
tensor_dict = { | |
k: to_tensor(v) for k, v in np_example.items() if k in features_to_keep | |
} | |
return tensor_dict | |
def _add_protein_probablistic_features(features: FeatureDict, cfg: mlc.ConfigDict, mode: str) -> FeatureDict: | |
if mode == "train": | |
p = torch.rand(1).item() | |
use_clamped_fape_value = float(p < cfg.supervised.clamp_prob) | |
features["use_clamped_fape"] = np.float32(use_clamped_fape_value) | |
else: | |
features["use_clamped_fape"] = np.float32(0.0) | |
return features | |
def compose(x, fs): | |
for f in fs: | |
x = f(x) | |
return x | |
def _apply_protein_transforms(tensors: FeatureTensorDict) -> FeatureTensorDict: | |
transforms = [ | |
data_transforms.cast_to_64bit_ints, | |
data_transforms.squeeze_features, | |
data_transforms.make_atom14_masks, | |
data_transforms.make_atom14_positions, | |
data_transforms.atom37_to_frames, | |
data_transforms.atom37_to_torsion_angles(""), | |
data_transforms.make_pseudo_beta(), | |
data_transforms.get_backbone_frames, | |
data_transforms.get_chi_angles, | |
] | |
tensors = compose(transforms)(tensors) | |
return tensors | |
def _apply_protein_probablistic_transforms(tensors: FeatureTensorDict, cfg: mlc.ConfigDict, mode: str) \ | |
-> FeatureTensorDict: | |
transforms = [data_transforms.make_target_feat()] | |
crop_feats = dict(cfg.common.feat) | |
if cfg[mode].fixed_size: | |
transforms.append(data_transforms.select_feat(list(crop_feats))) | |
# TODO bshor: restore transforms for training on cropped proteins, need to handle pocket somehow | |
# if so, look for random_crop_to_size and make_fixed_size in data_transforms.py | |
compose(transforms)(tensors) | |
return tensors | |
class DataPipeline: | |
"""Assembles input features.""" | |
def __init__(self, config: mlc.ConfigDict, mode: str): | |
self.config = config | |
self.mode = mode | |
self.feature_names = config.common.unsupervised_features | |
if config[mode].supervised: | |
self.feature_names += config.supervised.supervised_features | |
def process_pdb(self, pdb_path: str) -> FeatureTensorDict: | |
""" | |
Assembles features for a protein in a PDB file. | |
""" | |
with open(pdb_path, 'r') as f: | |
pdb_str = f.read() | |
protein_object = protein.from_pdb_string(pdb_str) | |
description = os.path.splitext(os.path.basename(pdb_path))[0].upper() | |
pdb_feats = make_protein_features(protein_object, description) | |
pdb_feats = _add_protein_probablistic_features(pdb_feats, self.config, self.mode) | |
tensor_feats = _np_filter_and_to_tensor_dict(pdb_feats, self.feature_names) | |
tensor_feats = _apply_protein_transforms(tensor_feats) | |
tensor_feats = _apply_protein_probablistic_transforms(tensor_feats, self.config, self.mode) | |
return tensor_feats | |
def _prepare_recycles(feat: torch.Tensor, num_recycles: int) -> torch.Tensor: | |
return feat.unsqueeze(-1).repeat(*([1] * len(feat.shape)), num_recycles) | |
def _fit_to_crop(target_tensor: torch.Tensor, crop_size: int, start_ind: int) -> torch.Tensor: | |
if len(target_tensor.shape) == 1: | |
ret = torch.zeros((crop_size, ), dtype=target_tensor.dtype) | |
ret[start_ind:start_ind + target_tensor.shape[0]] = target_tensor | |
return ret | |
elif len(target_tensor.shape) == 2: | |
ret = torch.zeros((crop_size, target_tensor.shape[-1]), dtype=target_tensor.dtype) | |
ret[start_ind:start_ind + target_tensor.shape[0], :] = target_tensor | |
return ret | |
else: | |
ret = torch.zeros((crop_size, *target_tensor.shape[1:]), dtype=target_tensor.dtype) | |
ret[start_ind:start_ind + target_tensor.shape[0], ...] = target_tensor | |
return ret | |
def parse_input_json(input_path: str, mode: str, config: mlc.ConfigDict, data_pipeline: DataPipeline, | |
data_dir: str, idx: int) -> FeatureTensorDict: | |
start_load_time = time.time() | |
input_data = json.load(open(input_path, "r")) | |
if mode == "train" or mode == "eval": | |
print("loading", input_data["pdb_id"], end=" ") | |
num_recycles = config.common.max_recycling_iters + 1 | |
input_protein_r_feats = data_pipeline.process_pdb(pdb_path=os.path.join(data_dir, input_data["input_r_structure"])) | |
input_protein_l_feats = data_pipeline.process_pdb(pdb_path=os.path.join(data_dir, input_data["input_l_structure"])) | |
n_res_r = input_protein_r_feats["protein_target_feat"].shape[0] | |
n_res_l = input_protein_l_feats["protein_target_feat"].shape[0] | |
n_res_total = n_res_r + n_res_l | |
n_affinity = 1 | |
# add 1 for affinity token | |
crop_size = n_res_total + n_affinity | |
if (mode == "train" or mode == "eval") and config.train.fixed_size: | |
crop_size = config.train.crop_size | |
assert crop_size >= n_res_total + n_affinity, f"crop_size: {crop_size}, n_res_r: {n_res_r}, n_res_l: {n_res_l}" | |
token_mask = torch.zeros((crop_size,), dtype=torch.float32) | |
token_mask[:n_res_total + n_affinity] = 1 | |
protein_r_mask = torch.zeros((crop_size,), dtype=torch.float32) | |
protein_r_mask[:n_res_r] = 1 | |
protein_l_mask = torch.zeros((crop_size,), dtype=torch.float32) | |
protein_l_mask[n_res_r:n_res_total] = 1 | |
affinity_mask = torch.zeros((crop_size,), dtype=torch.float32) | |
affinity_mask[n_res_total] = 1 | |
structural_mask = torch.zeros((crop_size,), dtype=torch.float32) | |
structural_mask[:n_res_total] = 1 | |
inter_pair_mask = torch.zeros((crop_size, crop_size), dtype=torch.float32) | |
inter_pair_mask[:n_res_r, n_res_r:n_res_total] = 1 | |
inter_pair_mask[n_res_r:n_res_total, :n_res_r] = 1 | |
tf_dim = input_protein_r_feats["protein_target_feat"].shape[-1] | |
target_feat = torch.zeros((crop_size, tf_dim + 3), dtype=torch.float32) | |
target_feat[:n_res_r, :tf_dim] = input_protein_r_feats["protein_target_feat"] | |
target_feat[n_res_r:n_res_total, :tf_dim] = input_protein_l_feats["protein_target_feat"] | |
target_feat[:n_res_r, tf_dim] = 1 # Set "is_protein_r" flag for protein rows | |
target_feat[n_res_r:n_res_total, tf_dim + 1] = 1 # Set "is_protein_l" flag for ligand rows | |
target_feat[n_res_total, tf_dim + 2] = 1 # Set "is_affinity" flag for affinity row | |
input_positions = torch.zeros((crop_size, 3), dtype=torch.float32) | |
input_positions[:n_res_r] = input_protein_r_feats["pseudo_beta"] | |
input_positions[n_res_r:n_res_total] = input_protein_l_feats["pseudo_beta"] | |
distogram_mask = torch.zeros(crop_size) | |
if mode == "train": | |
ones_indices = torch.randperm(n_res_total)[:int(n_res_total * config.train.distogram_mask_prob)] | |
# print(ones_indices) | |
distogram_mask[ones_indices] = 1 | |
input_positions = input_positions * (1 - distogram_mask).unsqueeze(-1) | |
elif mode == "predict": | |
# ignore all positions where pseudo_beta is 0, 0, 0 | |
distogram_mask = (input_positions == 0).all(dim=-1).float() | |
# print("Ignoring residues", torch.nonzero(distogram_mask).flatten()) | |
# Implement ligand as amino acid type 20 | |
aatype = torch.cat([input_protein_r_feats["aatype"], input_protein_l_feats["aatype"]], dim=0) | |
residue_index = torch.cat([input_protein_r_feats["residue_index"], input_protein_l_feats["residue_index"]], dim=0) | |
residx_atom37_to_atom14 = torch.cat([input_protein_r_feats["residx_atom37_to_atom14"], | |
input_protein_l_feats["residx_atom37_to_atom14"]], | |
dim=0) | |
atom37_atom_exists = torch.cat([input_protein_r_feats["atom37_atom_exists"], | |
input_protein_l_feats["atom37_atom_exists"]], dim=0) | |
feats = { | |
"token_mask": token_mask, | |
"protein_r_mask": protein_r_mask, | |
"protein_l_mask": protein_l_mask, | |
"affinity_mask": affinity_mask, | |
"structural_mask": structural_mask, | |
"inter_pair_mask": inter_pair_mask, | |
"target_feat": target_feat, | |
"input_positions": input_positions, | |
"distogram_mask": distogram_mask, | |
"residue_index": _fit_to_crop(residue_index, crop_size, 0), | |
"aatype": _fit_to_crop(aatype, crop_size, 0), | |
"residx_atom37_to_atom14": _fit_to_crop(residx_atom37_to_atom14, crop_size, 0), | |
"atom37_atom_exists": _fit_to_crop(atom37_atom_exists, crop_size, 0), | |
} | |
if mode == "predict": | |
feats.update({ | |
"in_chain_residue_index_r": input_protein_r_feats["in_chain_residue_index"], | |
"chain_index_r": input_protein_r_feats["chain_index"], | |
"in_chain_residue_index_l": input_protein_l_feats["in_chain_residue_index"], | |
"chain_index_l": input_protein_l_feats["chain_index"], | |
}) | |
if mode == 'train' or mode == 'eval': | |
gt_protein_r_feats = data_pipeline.process_pdb(pdb_path=os.path.join(data_dir, input_data["gt_r_structure"])) | |
gt_protein_l_feats = data_pipeline.process_pdb(pdb_path=os.path.join(data_dir, input_data["gt_l_structure"])) | |
affinity_loss_factor = torch.tensor([1.0], dtype=torch.float32) | |
if input_data.get("affinity") is None: | |
eps = 1e-6 | |
affinity_loss_factor = torch.tensor([eps], dtype=torch.float32) | |
affinity = torch.tensor([0.0], dtype=torch.float32) | |
else: | |
affinity = torch.tensor([input_data["affinity"]], dtype=torch.float32) | |
resolution = torch.tensor(input_data["resolution"], dtype=torch.float32) | |
# prepare inter_contacts | |
expanded_prot_r_pos = gt_protein_r_feats["pseudo_beta"].unsqueeze(1) # Shape: (n_res_r, 1, 3) | |
expanded_prot_l_pos = gt_protein_l_feats["pseudo_beta"].unsqueeze(0) # Shape: (1, n_res_l, 3) | |
distances = torch.sqrt(torch.sum((expanded_prot_r_pos - expanded_prot_l_pos) ** 2, dim=-1)) | |
inter_contact = (distances < 8.0).float() | |
binding_site_mask_r = inter_contact.any(dim=1).float() | |
binding_site_mask_l = inter_contact.any(dim=0).float() | |
print("attaching binding masks", binding_site_mask_r.shape, binding_site_mask_l.shape) | |
binding_site_mask = torch.cat([binding_site_mask_r, binding_site_mask_l], dim=0) | |
inter_contact_reshaped_to_crop = torch.zeros((crop_size, crop_size), dtype=torch.float32) | |
inter_contact_reshaped_to_crop[:n_res_r, n_res_r:n_res_total] = inter_contact | |
inter_contact_reshaped_to_crop[n_res_r:n_res_total, :n_res_r] = inter_contact.T | |
# Use CA positions only | |
atom37_gt_positions = torch.cat([gt_protein_r_feats["all_atom_positions"], | |
gt_protein_l_feats["all_atom_positions"]], dim=0) | |
atom37_atom_exists_in_res = torch.cat([gt_protein_r_feats["atom37_atom_exists"], | |
gt_protein_l_feats["atom37_atom_exists"]], dim=0) | |
atom37_atom_exists_in_gt = torch.cat([gt_protein_r_feats["all_atom_mask"], | |
gt_protein_l_feats["all_atom_mask"]], dim=0) | |
atom14_gt_positions = torch.cat([gt_protein_r_feats["atom14_gt_positions"], | |
gt_protein_l_feats["atom14_gt_positions"]], dim=0) | |
atom14_atom_exists_in_res = torch.cat([gt_protein_r_feats["atom14_atom_exists"], | |
gt_protein_l_feats["atom14_atom_exists"]], dim=0) | |
atom14_atom_exists_in_gt = torch.cat([gt_protein_r_feats["atom14_gt_exists"], | |
gt_protein_l_feats["atom14_gt_exists"]], dim=0) | |
gt_pseudo_beta_joined = torch.cat([gt_protein_r_feats["pseudo_beta"], gt_protein_l_feats["pseudo_beta"]], dim=0) | |
gt_pseudo_beta_joined_mask = torch.cat([gt_protein_r_feats["pseudo_beta_mask"], | |
gt_protein_l_feats["pseudo_beta_mask"]], dim=0) | |
# IGNORES: residx_atom14_to_atom37, rigidgroups_group_exists, | |
# rigidgroups_group_is_ambiguous, pseudo_beta_mask, backbone_rigid_mask, protein_target_feat | |
gt_protein_feats = { | |
"atom37_gt_positions": atom37_gt_positions, # torch.Size([n_struct, 37, 3]) | |
"atom37_atom_exists_in_res": atom37_atom_exists_in_res, # torch.Size([n_struct, 37]) | |
"atom37_atom_exists_in_gt": atom37_atom_exists_in_gt, # torch.Size([n_struct, 37]) | |
"atom14_gt_positions": atom14_gt_positions, # torch.Size([n_struct, 14, 3]) | |
"atom14_atom_exists_in_res": atom14_atom_exists_in_res, # torch.Size([n_struct, 14]) | |
"atom14_atom_exists_in_gt": atom14_atom_exists_in_gt, # torch.Size([n_struct, 14]) | |
"gt_pseudo_beta_joined": gt_pseudo_beta_joined, # torch.Size([n_struct, 3]) | |
"gt_pseudo_beta_joined_mask": gt_pseudo_beta_joined_mask, # torch.Size([n_struct]) | |
# These we don't need to add the ligand to, because padding is sufficient (everything should be 0) | |
"atom14_alt_gt_positions": torch.cat([gt_protein_r_feats["atom14_alt_gt_positions"], | |
gt_protein_l_feats["atom14_alt_gt_positions"]], dim=0), # torch.Size([n_res, 14, 3]) | |
"atom14_alt_gt_exists": torch.cat([gt_protein_r_feats["atom14_alt_gt_exists"], | |
gt_protein_l_feats["atom14_alt_gt_exists"]], dim=0), # torch.Size([n_res, 14]) | |
"atom14_atom_is_ambiguous": torch.cat([gt_protein_r_feats["atom14_atom_is_ambiguous"], | |
gt_protein_l_feats["atom14_atom_is_ambiguous"]], dim=0), # torch.Size([n_res, 14]) | |
"rigidgroups_gt_frames": torch.cat([gt_protein_r_feats["rigidgroups_gt_frames"], | |
gt_protein_l_feats["rigidgroups_gt_frames"]], dim=0), # torch.Size([n_res, 8, 4, 4]) | |
"rigidgroups_gt_exists": torch.cat([gt_protein_r_feats["rigidgroups_gt_exists"], | |
gt_protein_l_feats["rigidgroups_gt_exists"]], dim=0), # torch.Size([n_res, 8]) | |
"rigidgroups_alt_gt_frames": torch.cat([gt_protein_r_feats["rigidgroups_alt_gt_frames"], | |
gt_protein_l_feats["rigidgroups_alt_gt_frames"]], dim=0), # torch.Size([n_res, 8, 4, 4]) | |
"backbone_rigid_tensor": torch.cat([gt_protein_r_feats["backbone_rigid_tensor"], | |
gt_protein_l_feats["backbone_rigid_tensor"]], dim=0), # torch.Size([n_res, 4, 4]) | |
"backbone_rigid_mask": torch.cat([gt_protein_r_feats["backbone_rigid_mask"], | |
gt_protein_l_feats["backbone_rigid_mask"]], dim=0), # torch.Size([n_res]) | |
"chi_angles_sin_cos": torch.cat([gt_protein_r_feats["chi_angles_sin_cos"], | |
gt_protein_l_feats["chi_angles_sin_cos"]], dim=0), | |
"chi_mask": torch.cat([gt_protein_r_feats["chi_mask"], gt_protein_l_feats["chi_mask"]], dim=0), | |
} | |
for k, v in gt_protein_feats.items(): | |
gt_protein_feats[k] = _fit_to_crop(v, crop_size, 0) | |
feats = { | |
**feats, | |
**gt_protein_feats, | |
"resolution": resolution, | |
"affinity": affinity, | |
"affinity_loss_factor": affinity_loss_factor, | |
"seq_length": torch.tensor(n_res_total), | |
"binding_site_mask": _fit_to_crop(binding_site_mask, crop_size, 0), | |
"gt_inter_contacts": inter_contact_reshaped_to_crop, | |
} | |
for k, v in feats.items(): | |
# print(k, v.shape) | |
feats[k] = _prepare_recycles(v, num_recycles) | |
feats["batch_idx"] = torch.tensor( | |
[idx for _ in range(crop_size)], dtype=torch.int64, device=feats["aatype"].device | |
) | |
print("load time", round(time.time() - start_load_time, 4)) | |
return feats | |