Spaces:
Running
Running
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import operator | |
import time | |
import dllogger as logger | |
from dllogger import JSONStreamBackend, StdOutBackend, Verbosity | |
import numpy as np | |
from lightning import Callback | |
import torch.cuda.profiler as profiler | |
def is_main_process(): | |
return int(os.getenv("LOCAL_RANK", "0")) == 0 | |
class PerformanceLoggingCallback(Callback): | |
def __init__(self, log_file, global_batch_size, warmup_steps: int = 0, profile: bool = False): | |
logger.init(backends=[JSONStreamBackend(Verbosity.VERBOSE, log_file), StdOutBackend(Verbosity.VERBOSE)]) | |
self.warmup_steps = warmup_steps | |
self.global_batch_size = global_batch_size | |
self.step = 0 | |
self.profile = profile | |
self.timestamps = [] | |
def do_step(self): | |
self.step += 1 | |
if self.profile and self.step == self.warmup_steps: | |
profiler.start() | |
if self.step > self.warmup_steps: | |
self.timestamps.append(time.time()) | |
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx): | |
self.do_step() | |
def on_test_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx: int = 0): | |
self.do_step() | |
def process_performance_stats(self, deltas): | |
def _round3(val): | |
return round(val, 3) | |
throughput_imgps = _round3(self.global_batch_size / np.mean(deltas)) | |
timestamps_ms = 1000 * deltas | |
stats = { | |
f"throughput": throughput_imgps, | |
f"latency_mean": _round3(timestamps_ms.mean()), | |
} | |
for level in [90, 95, 99]: | |
stats.update({f"latency_{level}": _round3(np.percentile(timestamps_ms, level))}) | |
return stats | |
def _log(self): | |
if is_main_process(): | |
diffs = list(map(operator.sub, self.timestamps[1:], self.timestamps[:-1])) | |
deltas = np.array(diffs) | |
stats = self.process_performance_stats(deltas) | |
logger.log(step=(), data=stats) | |
logger.flush() | |
def on_train_end(self, trainer, pl_module): | |
if self.profile: | |
profiler.stop() | |
self._log() | |
def on_epoch_end(self, trainer, pl_module): | |
self._log() | |