# Copyright 2021 AlQuraishi Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from Bio.SVDSuperimposer import SVDSuperimposer import numpy as np import torch def _superimpose_np(reference, coords): """ Superimposes coordinates onto a reference by minimizing RMSD using SVD. Args: reference: [N, 3] reference array coords: [N, 3] array Returns: A tuple of [N, 3] superimposed coords and the final RMSD. """ sup = SVDSuperimposer() sup.set(reference, coords) sup.run() rotran = sup.get_rotran() return sup.get_transformed(), sup.get_rms(), rotran def _superimpose_single(reference, coords): reference_np = reference.detach().cpu().numpy() coords_np = coords.detach().cpu().numpy() superimposed, rmsd, rotran = _superimpose_np(reference_np, coords_np) rotran = (coords.new_tensor(rotran[0]), coords.new_tensor(rotran[1])) return coords.new_tensor(superimposed), coords.new_tensor(rmsd), rotran def superimpose(reference, coords, mask): """ Superimposes coordinates onto a reference by minimizing RMSD using SVD. Args: reference: [*, N, 3] reference tensor coords: [*, N, 3] tensor mask: [*, N] tensor Returns: A tuple of [*, N, 3] superimposed coords and [*] final RMSDs. """ def select_unmasked_coords(coords, mask): return torch.masked_select( coords, (mask > 0.)[..., None], ).reshape(-1, 3) batch_dims = reference.shape[:-2] flat_reference = reference.reshape((-1,) + reference.shape[-2:]) flat_coords = coords.reshape((-1,) + reference.shape[-2:]) flat_mask = mask.reshape((-1,) + mask.shape[-1:]) superimposed_list = [] rmsds = [] rotrans = [] for r, c, m in zip(flat_reference, flat_coords, flat_mask): r_unmasked_coords = select_unmasked_coords(r, m) c_unmasked_coords = select_unmasked_coords(c, m) superimposed, rmsd, rotran = _superimpose_single( r_unmasked_coords, c_unmasked_coords ) # This is very inelegant, but idk how else to invert the masking # procedure. count = 0 superimposed_full_size = torch.zeros_like(r) for i, unmasked in enumerate(m): if(unmasked): superimposed_full_size[i] = superimposed[count] count += 1 superimposed_list.append(superimposed_full_size) rmsds.append(rmsd) rotrans.append(rotran) superimposed_stacked = torch.stack(superimposed_list, dim=0) rmsds_stacked = torch.stack(rmsds, dim=0) rots = [r for r, t in rotrans] rots_stacked = torch.stack(rots, dim=0) trans = [t for r, t in rotrans] trans_stacked = torch.stack(trans, dim=0) superimposed_reshaped = superimposed_stacked.reshape( batch_dims + coords.shape[-2:] ) rmsds_reshaped = rmsds_stacked.reshape( batch_dims ) return superimposed_reshaped, rmsds_reshaped, rots_stacked, trans_stacked