import time import gradio as gr from gradio_molecule3d import Molecule3D import numpy as np from biotite.structure.io.pdb import PDBFile from rdkit import Chem from rdkit.Chem import AllChem def generate_input_conformer( ligand_smiles: str, addHs: bool = False, minimize_maxIters: int = -1, ) -> Chem.Mol: _mol = Chem.MolFromSmiles(ligand_smiles) # need to add Hs to generate sensible conformers _mol = Chem.AddHs(_mol) # try embedding molecule using ETKDGv2 (default) confid = AllChem.EmbedMolecule( _mol, useRandomCoords=True, useBasicKnowledge=True, maxAttempts=100, randomSeed=42, ) if confid != -1: if minimize_maxIters > 0: # molecule successfully embedded - minimize success = AllChem.MMFFOptimizeMolecule(_mol, maxIters=minimize_maxIters) # 0 if the optimization converged, # -1 if the forcefield could not be set up, # 1 if more iterations are required. if success == 1: # extend optimization to double the steps (extends by the same amount) AllChem.MMFFOptimizeMolecule(_mol, maxIters=minimize_maxIters) else: # this means EmbedMolecule failed # try less optimal approach confid = AllChem.EmbedMolecule( _mol, useRandomCoords=True, useBasicKnowledge=False, maxAttempts=100, randomSeed=42, ) return _mol def set_protein_to_new_coord(input_pdb_file, new_coord, output_file): structure = PDBFile.read(input_pdb_file).get_structure() structure.coord = np.array([new_coord] * len(structure.coord)) file = PDBFile() file.set_structure(structure) file.write(output_file) def predict(input_sequence, input_ligand, input_msa, input_protein): start_time = time.time() # Do inference here mol = generate_input_conformer(input_ligand, minimize_maxIters=100) molwriter = Chem.SDWriter("test_docking_pose.sdf") molwriter.write(mol) mol_coords = mol.GetConformer().GetPositions() # new_coord = [0, 0, 0] new_coord = np.mean(mol_coords, axis=1) output_file = "test_out.pdb" set_protein_to_new_coord(input_protein, new_coord, output_file) # return an output pdb file with the protein and ligand with resname LIG or UNK. # also return any metrics you want to log, metrics will not be used for evaluation but might be useful for users # metrics = {"mean_plddt": 80, "binding_affinity": -2} metrics = {} end_time = time.time() run_time = end_time - start_time return ["test_out.pdb", "test_docking_pose.sdf"], metrics, run_time with gr.Blocks() as app: gr.Markdown("# Template for inference") gr.Markdown("Title, description, and other information about the model") with gr.Row(): input_sequence = gr.Textbox(lines=3, label="Input Protein sequence (FASTA)") input_ligand = gr.Textbox(lines=3, label="Input ligand SMILES") with gr.Row(): input_msa = gr.File(label="Input Protein MSA (A3M)") input_protein = gr.File(label="Input protein monomer") # define any options here # for automated inference the default options are used # slider_option = gr.Slider(0,10, label="Slider Option") # checkbox_option = gr.Checkbox(label="Checkbox Option") # dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option") btn = gr.Button("Run Inference") gr.Examples( [ [ "", "COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O", "empty_file.a3m", "test_out.pdb" ], ], [input_sequence, input_ligand, input_msa, input_protein], ) reps = [ { "model": 0, "style": "cartoon", "color": "whiteCarbon", }, { "model": 1, "style": "stick", "color": "greenCarbon", } ] out = Molecule3D(reps=reps) metrics = gr.JSON(label="Metrics") run_time = gr.Textbox(label="Runtime") btn.click(predict, inputs=[input_sequence, input_ligand, input_msa, input_protein], outputs=[out, metrics, run_time]) app.launch()