File size: 1,955 Bytes
bebad14
 
 
dffaf30
 
bebad14
 
 
28cb117
 
bebad14
 
 
 
 
 
28cb117
bebad14
f624b87
bebad14
 
 
 
 
f354223
bebad14
f354223
 
bebad14
 
 
28cb117
bebad14
 
 
 
44470f9
28cb117
 
 
 
5122f94
28cb117
f354223
28cb117
 
 
 
 
 
 
 
 
 
 
5122f94
 
28cb117
 
 
 
 
 
bebad14
 
 
dffaf30
bebad14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

import time

import gradio as gr

from gradio_molecule3d import Molecule3D




def predict (input_sequence, input_ligand):
    start_time = time.time()
    # Do inference here
    # return an output directory
    end_time = time.time()
    run_time = end_time - start_time
    return "test_out.pdb", run_time

with gr.Blocks() as app:

    gr.Markdown("# Template for inference")

    gr.Markdown("Title, description, and other information about the model")   
    with gr.Row():
        input_sequence = gr.Textbox(lines=3, label="Input Protein sequence (FASTA)")
        input_ligand = gr.Textbox(lines=3, label="Input ligand SMILES")
        input_protein = gr.File(label="Input protein monomer")
        
    
    # define any options here

    # for automated inference the default options are used
    # slider_option = gr.Slider(0,10, label="Slider Option")
    # checkbox_option = gr.Checkbox(label="Checkbox Option")
    # dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")

    btn = gr.Button("Run Inference")

    gr.Examples(
        [
            [
                "SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL:SVKSEYAEAAAVGQEAVAVFNTMKAAFQNGDKEAVAQYLARLASLYTRHEELLNRILEKARREGNKEAVTLMNEFTATFQTGKSIFNAMVAAFKNGDDDSFESYLQALEKVTAKGETLADQIAKAL",
                "COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O",
                "test_out.pdb"
            ],
        ],
        [input_sequence, input_ligand],
    )
    reps =    [
    {
      "model": 0,
      "style": "cartoon",
      "color": "whiteCarbon",
    },
    {
      "model": 0,
      "resname": "UNK",
      "style": "stick",
      "color": "greenCarbon",
    }
  ]
    
    out = Molecule3D(reps=reps)
    run_time = gr.Textbox(label="Runtime")

    btn.click(predict, inputs=[input_sequence, input_ligand], outputs=[out, run_time])

app.launch()