import cv2 import numpy as np import gradio as gr def dark_channel(img, size = 15): r, g, b = cv2.split(img) min_img = cv2.min(r, cv2.min(g, b)) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size)) dc_img = cv2.erode(min_img, kernel) return dc_img def get_atmo(img, percent = 0.001): mean_perpix = np.mean(img, axis = 2).reshape(-1) mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)] return np.mean(mean_topper) def get_trans(img, atom, w = 0.95): x = img / atom t = 1 - w * dark_channel(x, 15) return t def guided_filter(p, i, r, e): mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r)) mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r)) corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r)) corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r)) var_I = corr_I - mean_I * mean_I cov_Ip = corr_Ip - mean_I * mean_p a = cov_Ip / (var_I + e) b = mean_p - a * mean_I mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r)) mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r)) q = mean_a * i + mean_b return q def dehaze(image): img = image.astype('float64') / 255 img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY).astype('float64') / 255 atom = get_atmo(img) trans = get_trans(img, atom) trans_guided = guided_filter(trans, img_gray, 20, 0.0001) trans_guided = np.maximum(trans_guided, 0.25) # Ensure trans_guided is not below 0.25 result = np.empty_like(img) for i in range(3): result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom # Ensure the result is in the range [0, 1] result = np.clip(result, 0, 1) return (result * 255).astype(np.uint8) # Create Gradio interface PixelDehazer = gr.Interface(fn=dehaze, inputs=gr.Image(type="numpy"), outputs="image") PixelDehazer.launch()