File size: 8,312 Bytes
4a9e8e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# Copyright 2022 Tristan Behrens.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
from fastapi import BackgroundTasks, FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from pydantic import BaseModel
from PIL import Image
import os
import io
import random
import base64
from time import time
from statistics import mean
from collections import OrderedDict
import torch
import wave
from source.logging import create_logger
from source.tokensequence import token_sequence_to_audio, token_sequence_to_image
from source import constants
from transformers import AutoTokenizer, AutoModelForCausalLM
logger = create_logger(__name__)
# Load the auth-token from authtoken.txt.
auth_token = os.getenv("authtoken")
# Loading the model and its tokenizer.
logger.info("Loading tokenizer and model...")
tokenizer = AutoTokenizer.from_pretrained(
"ai-guru/lakhclean_mmmtrack_4bars_d-2048", use_auth_token=auth_token
)
model = AutoModelForCausalLM.from_pretrained(
"ai-guru/lakhclean_mmmtrack_4bars_d-2048", use_auth_token=auth_token
)
logger.info("Done.")
# Create the app
logger.info("Creating app...")
app = FastAPI(docs_url=None, redoc_url=None)
app.mount("/static", StaticFiles(directory="static"), name="static")
logger.info("Done.")
class Options(BaseModel):
music_style: str
density: str
temperature: str
class NewTask(BaseModel):
music_style = "synth"
density = "medium"
temperature = "medium"
def get_place_in_queue(task_id):
queued_tasks = list(
task
for task in tasks.values()
if task["status"] == "queued" or task["status"] == "processing"
)
queued_tasks.sort(key=lambda task: task["created_at"])
queued_task_ids = list(task["task_id"] for task in queued_tasks)
try:
return queued_task_ids.index(task_id) + 1
except:
return 0
def calculate_eta(task_id):
total_durations = list(
task["completed_at"] - task["started_at"]
for task in tasks.values()
if "completed_at" in task and task["status"] == "completed"
)
initial_place_in_queue = tasks[task_id]["initial_place_in_queue"]
if len(total_durations):
eta = initial_place_in_queue * mean(total_durations)
else:
eta = initial_place_in_queue * 35
return round(eta, 1)
def next_task(task_id):
tasks[task_id]["completed_at"] = time()
queued_tasks = list(task for task in tasks.values() if task["status"] == "queued")
if queued_tasks:
print(
f"{task_id} {tasks[task_id]['status']}. Task/s remaining: {len(queued_tasks)}"
)
process_task(queued_tasks[0]["task_id"])
def process_task(task_id):
if "processing" in list(task["status"] for task in tasks.values()):
return
if tasks[task_id]["last_poll"] and time() - tasks[task_id]["last_poll"] > 30:
tasks[task_id]["status"] = "abandoned"
next_task(task_id)
tasks[task_id]["status"] = "processing"
tasks[task_id]["started_at"] = time()
print(f"Processing {task_id}")
try:
tasks[task_id]["output"] = compose(
tasks[task_id]["music_style"],
tasks[task_id]["density"],
tasks[task_id]["temperature"],
)
except Exception as ex:
tasks[task_id]["status"] = "failed"
tasks[task_id]["error"] = repr(ex)
else:
tasks[task_id]["status"] = "completed"
finally:
next_task(task_id)
def compose(music_style, density, temperature):
instruments = constants.get_instruments(music_style)
density = constants.get_density(density)
temperature = constants.get_temperature(temperature)
print(f"instruments: {instruments} density: {density} temperature: {temperature}")
# Generate with the given parameters.
logger.info(f"Generating token sequence...")
generated_sequence = generate_sequence(instruments, density, temperature)
logger.info(f"Generated token sequence: {generated_sequence}")
# Get the audio data as a array of int16.
logger.info("Generating audio...")
sample_rate, audio_data = token_sequence_to_audio(generated_sequence)
logger.info(f"Done. Audio data: {len(audio_data)}")
# Encode the audio-data as wave file in memory. Use the wave module.
audio_data_bytes = io.BytesIO()
wave_file = wave.open(audio_data_bytes, "wb")
wave_file.setframerate(sample_rate)
wave_file.setnchannels(1)
wave_file.setsampwidth(2)
wave_file.writeframes(audio_data)
wave_file.close()
# Return the audio-data as a base64-encoded string.
audio_data_bytes.seek(0)
audio_data_base64 = base64.b64encode(audio_data_bytes.read()).decode("utf-8")
audio_data_bytes.close()
# Convert the audio data to an PIL image.
image = token_sequence_to_image(generated_sequence)
# Save PIL image to harddrive as PNG.
logger.debug(f"Saving image to harddrive... {type(image)}")
image_file_name = "compose.png"
image.save(image_file_name, "PNG")
# Save image to virtual file.
img_io = io.BytesIO()
image.save(img_io, "PNG", quality=70)
img_io.seek(0)
# Return the image as a base64-encoded string.
image_data_base64 = base64.b64encode(img_io.read()).decode("utf-8")
img_io.close()
# Return.
return {
"tokens": generated_sequence,
"audio": "data:audio/wav;base64," + audio_data_base64,
"image": "data:image/png;base64," + image_data_base64,
"status": "OK",
}
def generate_sequence(instruments, density, temperature):
instruments = instruments[::]
random.shuffle(instruments)
generated_ids = tokenizer.encode("PIECE_START", return_tensors="pt")[0]
for instrument in instruments:
more_ids = tokenizer.encode(
f"TRACK_START INST={instrument} DENSITY={density}", return_tensors="pt"
)[0]
generated_ids = torch.cat((generated_ids, more_ids))
generated_ids = generated_ids.unsqueeze(0)
generated_ids = model.generate(
generated_ids,
max_length=2048,
do_sample=True,
temperature=temperature,
eos_token_id=tokenizer.encode("TRACK_END")[0],
)[0]
generated_sequence = tokenizer.decode(generated_ids)
print("GENERATING COMPLETE")
print(generate_sequence)
return generated_sequence
tasks = OrderedDict()
# Route for the loading page.
@app.head("/")
@app.route("/")
def index(request):
return FileResponse(path="static/index.html", media_type="text/html")
@app.post("/task/create")
def create_task(background_tasks: BackgroundTasks, new_task: NewTask):
created_at = time()
task_id = f"{str(created_at)}_{new_task.music_style}"
tasks[task_id] = OrderedDict(
{
"task_id": task_id,
"status": "queued",
"eta": None,
"created_at": created_at,
"started_at": None,
"completed_at": None,
"last_poll": None,
"poll_count": 0,
"initial_place_in_queue": None,
"place_in_queue": None,
"music_style": new_task.music_style,
"density": new_task.density,
"temperature": new_task.temperature,
"output": None,
}
)
tasks[task_id]["initial_place_in_queue"] = get_place_in_queue(task_id)
tasks[task_id]["eta"] = calculate_eta(task_id)
background_tasks.add_task(process_task, task_id)
return tasks[task_id]
@app.get("/task/poll")
def poll_task(task_id: str):
tasks[task_id]["place_in_queue"] = get_place_in_queue(task_id)
tasks[task_id]["eta"] = calculate_eta(task_id)
tasks[task_id]["last_poll"] = time()
tasks[task_id]["poll_count"] += 1
return tasks[task_id]
|