import pandas as pd import numpy as np import streamlit as st import joblib from sklearn.linear_model import LinearRegression model = joblib.load('DeveloperSalary_Pred_Rgs.joblib') st.title('Salary prediction in 2022') st.write("""### fill the form for prediction""") columns = ['Country', 'EdLevel', 'YearsCode'] Country = st.selectbox('Chose your country', ['United States of America', 'Australia', 'Russian Federation', 'France', 'South Africa', 'Greece', 'Poland', 'Germany', 'Denmark', 'India', 'United Kingdom of Great Britain and Northern Ireland', 'Argentina', 'Hungary', 'Switzerland', 'Brazil', 'Italy', 'Spain', 'Iran, Islamic Republic of...', 'Bangladesh', 'Israel', 'Sweden', 'Portugal', 'Netherlands', 'Canada', 'Mexico', 'Austria', 'Norway', 'Finland', 'Czech Republic', 'Belgium', 'Turkey', 'Romania', 'Ukraine', 'Colombia', 'New Zealand', 'Ireland', 'Pakistan', 'Japan']) EdLevel = st.selectbox('What is your educational level ?', ['Master’s degree', 'Bachelor’s degree', 'Less than a Bachelors', 'Post grad']) YearsOfCode = st.slider('How many years have you been coding ?', 0, 100) ok = st.button('Pred Salary') if ok: rows = np.array([Country, EdLevel, YearsOfCode]) X_new = pd.DataFrame([rows], columns=columns) Salary = model.predict(X_new) st.subheader(f'The estimate salary is ${Salary[0]:.2f}')