Spaces:
Runtime error
Runtime error
import gradio as gr | |
import inspect | |
import warnings | |
from typing import List, Optional, Union | |
import requests | |
from io import BytesIO | |
from PIL import Image | |
import torch | |
from torch import autocast | |
from tqdm.auto import tqdm | |
from diffusers import StableDiffusionImg2ImgPipeline | |
from huggingface_hub import notebook_login | |
notebook_login() | |
device = "cuda" | |
model_path = "CompVis/stable-diffusion-v1-4" | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
model_path, | |
revision="fp16", | |
torch_dtype=torch.float16, | |
use_auth_token=True | |
) | |
pipe = pipe.to(device) | |
def predict(image_url, strength, seed): | |
seed= int(seed) | |
response = requests.get(image_url) | |
init_img = Image.open(BytesIO(response.content)).convert("RGB") | |
init_img = init_img.resize((768, 512)) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
with autocast("cuda"): | |
image = pipe(prompt="", init_image=init_img, strength=strength, guidance_scale=5, generator=generator).images[0] | |
return image | |
gr.Interface( | |
predict, | |
title = 'Image to Image using Diffusers', | |
inputs=[ | |
gr.Textbox(label="image_url"), | |
gr.Slider(0, 1, value=0.05, label ="strength"), | |
gr.Number(label = "seed") | |
], | |
outputs = [ | |
gr.Image() | |
] | |
).launch() | |