Commit
Β·
2846658
1
Parent(s):
3ccc981
haystack 2.0 implementation
Browse files- .gitignore +2 -1
- Dockerfile +29 -0
- README.md +45 -48
- app.py +207 -251
- authenticator_config.yaml +15 -0
- document_qa_engine.py +120 -0
- generate_keys.py +0 -15
- hashed_password.pkl +0 -0
- requirements.txt +18 -10
- ml_logo.png β resources/ml_logo.png +0 -0
- utils.py +58 -0
.gitignore
CHANGED
@@ -2,4 +2,5 @@
|
|
2 |
.vscode
|
3 |
.idea
|
4 |
*.pyc
|
5 |
-
**/.DS_Store
|
|
|
|
2 |
.vscode
|
3 |
.idea
|
4 |
*.pyc
|
5 |
+
**/.DS_Store
|
6 |
+
venv/
|
Dockerfile
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
RUN apt-get update && apt-get install -y \
|
6 |
+
build-essential \
|
7 |
+
curl \
|
8 |
+
software-properties-common \
|
9 |
+
git \
|
10 |
+
&& rm -rf /var/lib/apt/lists/*
|
11 |
+
|
12 |
+
COPY requirements.txt .
|
13 |
+
|
14 |
+
RUN pip3 install -r requirements.txt
|
15 |
+
|
16 |
+
COPY . .
|
17 |
+
|
18 |
+
# extract version
|
19 |
+
COPY .git ./.git
|
20 |
+
RUN git rev-parse --short HEAD > revision.txt
|
21 |
+
RUN rm -rf ./.git
|
22 |
+
|
23 |
+
EXPOSE 8501
|
24 |
+
|
25 |
+
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
|
26 |
+
|
27 |
+
ENV PYTHONPATH "${PYTHONPATH}:."
|
28 |
+
|
29 |
+
ENTRYPOINT ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
|
README.md
CHANGED
@@ -9,70 +9,63 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
#
|
13 |
|
14 |
-
This template [Streamlit](https://docs.streamlit.io/) app set up for
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
Below you will also find instructions on how you could [push this to Hugging Face Spaces π€](#pushing-to-hugging-face-spaces-).
|
19 |
|
20 |
## Installation and Running
|
21 |
-
To run the bare application which does _nothing_:
|
22 |
-
1. Install requirements: `pip install -r requirements.txt`
|
23 |
-
2. Run the streamlit app: `streamlit run app.py`
|
24 |
-
|
25 |
-
This will start up the app on `localhost:8501` where you will find a simple search bar. Before you start editing, you'll notice that the app will only show you instructions on what to edit.
|
26 |
|
27 |
-
###
|
28 |
-
|
29 |
-
You can set optional cofigurations to set the:
|
30 |
-
- `--task` you want to start the app with: `rag` or `extractive` (default: rag)
|
31 |
-
- `--store` you want to use: `inmemory`, `opensearch`, `weaviate` or `milvus` (default: inmemory)
|
32 |
-
- `--name` you want to have for the app. (default: 'My Search App')
|
33 |
-
|
34 |
-
E.g.:
|
35 |
-
|
36 |
-
```bash
|
37 |
-
streamlit run app.py -- --store opensearch --task extractive --name 'My Opensearch Documentation Search'
|
38 |
-
```
|
39 |
|
40 |
-
|
41 |
-
- The DocumentStore of your choice
|
42 |
-
- The Extractive/Generative model of your choice
|
43 |
|
44 |
-
|
|
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
|
49 |
-
OPENAI_KEY=YOUR_KEY
|
50 |
-
EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L12-v2
|
51 |
-
GENERATIVE_MODEL=text-davinci-003
|
52 |
-
```
|
53 |
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
3. Change the code in `utils/haystack.py` if you would like a different pipeline.
|
59 |
-
4. Create a `.env`file with all of your configuration settings.
|
60 |
-
5. Make any UI edits you'd like to and [share with the Haystack community](https://haystack.deepeset.ai/community)
|
61 |
-
6. Run the app as show in [installation and running](#installation-and-running)
|
62 |
|
63 |
### Repo structure
|
64 |
-
|
65 |
-
|
66 |
-
- `
|
|
|
|
|
|
|
|
|
|
|
67 |
- `ui.py`: Use this file for any UI and initial value setups.
|
68 |
-
- `app.py`: This is the main Streamlit application file that we will run. In its current state it has a simple search
|
|
|
|
|
|
|
69 |
|
70 |
### What to edit?
|
|
|
71 |
There are default pipelines both in `start_haystack_extractive()` and `start_haystack_rag()`
|
72 |
|
73 |
- Change the pipelines to use the embedding models, extractive or generative models as you need.
|
74 |
-
- If using the `rag` task, change the `default_prompt_template` to use one of our available ones
|
|
|
|
|
|
|
75 |
|
|
|
|
|
|
|
76 |
|
77 |
## Pushing to Hugging Face Spaces π€
|
78 |
|
@@ -83,15 +76,19 @@ A few things to pay attention to:
|
|
83 |
1. Create a New Space on Hugging Face with the Streamlit SDK.
|
84 |
2. Create a Hugging Face token on your HF account.
|
85 |
3. Create a secret on your GitHub repo called `HF_TOKEN` and put your Hugging Face token here.
|
86 |
-
4. If you're using DocumentStores or APIs that require some keys/tokens, make sure these are provided as a secret for
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
89 |
|
90 |
```yaml
|
91 |
name: Sync to Hugging Face hub
|
92 |
on:
|
93 |
push:
|
94 |
-
branches: [main]
|
95 |
|
96 |
# to run this workflow manually from the Actions tab
|
97 |
workflow_dispatch:
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Document Insights - Extractive & Generative Methods using Haystack
|
13 |
|
14 |
+
This template [Streamlit](https://docs.streamlit.io/) app set up for
|
15 |
+
simple [Haystack search applications](https://docs.haystack.deepset.ai/docs/semantic_search). The template is ready to
|
16 |
+
do QA with **Retrievel Augmented Generation**, or **Ectractive QA**
|
17 |
|
18 |
+
Below you will also find instructions on how you
|
19 |
+
could [push this to Hugging Face Spaces π€](#pushing-to-hugging-face-spaces-).
|
|
|
20 |
|
21 |
## Installation and Running
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
### Local development
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
To run the bare application which does _nothing_:
|
|
|
|
|
26 |
|
27 |
+
1. Install requirements: `pip install -r requirements.txt`
|
28 |
+
2. Run the streamlit app: `streamlit run app.py`
|
29 |
|
30 |
+
This will start up the app on `localhost:8501` where you will find a simple search bar. Before you start editing, you'll
|
31 |
+
notice that the app will only show you instructions on what to edit.
|
32 |
|
33 |
+
### Docker
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
To run the app in a Docker container:
|
36 |
|
37 |
+
1. Build the Docker image: `docker build -t haystack-streamlit .`
|
38 |
+
2. Run the Docker container: `docker run -p 8501:8501 haystack-streamlit` (make sure to bind any other ports you need)
|
39 |
+
3. Open your browser and go to `http://localhost:8501`
|
|
|
|
|
|
|
|
|
40 |
|
41 |
### Repo structure
|
42 |
+
|
43 |
+
- `./utils`: This is where we have 3 files:
|
44 |
+
- `config.py`: This file extracts all of the configuration settings from a `.env` file. For some config settings, it
|
45 |
+
uses default values. An example of this is
|
46 |
+
in [this demo project](https://github.com/TuanaCelik/should-i-follow/blob/main/utils/config.py).
|
47 |
+
- `haystack.py`: Here you will find some functions already set up for you to start creating your Haystack search
|
48 |
+
pipeline. It includes 2 main functions called `start_haystack()` which is what we use to create a pipeline and
|
49 |
+
cache it, and `query()` which is the function called by `app.py` once a user query is received.
|
50 |
- `ui.py`: Use this file for any UI and initial value setups.
|
51 |
+
- `app.py`: This is the main Streamlit application file that we will run. In its current state it has a simple search
|
52 |
+
bar, a 'Run' button, and a response that you can highlight answers with.
|
53 |
+
- `requirements.txt`: This file includes the required libraries to run the Streamlit app.
|
54 |
+
- `document_qa_engine.py`: This file includes the QA pipeline with Haystack.
|
55 |
|
56 |
### What to edit?
|
57 |
+
|
58 |
There are default pipelines both in `start_haystack_extractive()` and `start_haystack_rag()`
|
59 |
|
60 |
- Change the pipelines to use the embedding models, extractive or generative models as you need.
|
61 |
+
- If using the `rag` task, change the `default_prompt_template` to use one of our available ones
|
62 |
+
on [PromptHub](https://prompthub.deepset.ai) or create your own `PromptTemplate`
|
63 |
+
|
64 |
+
### Using local LLM models
|
65 |
|
66 |
+
To use the `local LLM` mode you can use [LM Studio](https://lmstudio.ai/) or [Ollama](https://ollama.com/).
|
67 |
+
For more info on how to run the app with a local LLM model please refer to the documentation of the tool you are using.
|
68 |
+
The `local_llm` mode expects an API available at `http://localhost:1234/v1`.
|
69 |
|
70 |
## Pushing to Hugging Face Spaces π€
|
71 |
|
|
|
76 |
1. Create a New Space on Hugging Face with the Streamlit SDK.
|
77 |
2. Create a Hugging Face token on your HF account.
|
78 |
3. Create a secret on your GitHub repo called `HF_TOKEN` and put your Hugging Face token here.
|
79 |
+
4. If you're using DocumentStores or APIs that require some keys/tokens, make sure these are provided as a secret for
|
80 |
+
your HF Space too!
|
81 |
+
5. This readme is set up to tell HF spaces that it's using streamlit and that the app is running on `app.py`, make any
|
82 |
+
changes to the frontmatter of this readme to display the title, emoji etc you desire.
|
83 |
+
6. Create a file in `.github/workflows/hf_sync.yml`. Here's an example that you can change with your own information,
|
84 |
+
and an [example workflow](https://github.com/TuanaCelik/should-i-follow/blob/main/.github/workflows/hf_sync.yml)
|
85 |
+
working for the [Should I Follow demo](https://huggingface.co/spaces/deepset/should-i-follow)
|
86 |
|
87 |
```yaml
|
88 |
name: Sync to Hugging Face hub
|
89 |
on:
|
90 |
push:
|
91 |
+
branches: [ main ]
|
92 |
|
93 |
# to run this workflow manually from the Actions tab
|
94 |
workflow_dispatch:
|
app.py
CHANGED
@@ -1,284 +1,240 @@
|
|
1 |
-
from utils.check_pydantic_version import use_pydantic_v1
|
2 |
-
use_pydantic_v1() #This function has to be run before importing haystack. as haystack requires pydantic v1 to run
|
3 |
-
|
4 |
-
|
5 |
-
from operator import index
|
6 |
-
import streamlit as st
|
7 |
-
import logging
|
8 |
import os
|
9 |
-
|
10 |
-
from annotated_text import annotation
|
11 |
-
from json import JSONDecodeError
|
12 |
-
from markdown import markdown
|
13 |
-
from utils.config import parser
|
14 |
-
from utils.haystack import start_document_store, query, initialize_pipeline, start_preprocessor_node, start_retriever, start_reader
|
15 |
-
from utils.ui import reset_results, set_initial_state
|
16 |
import pandas as pd
|
17 |
-
import
|
18 |
-
|
19 |
-
from datetime import datetime
|
20 |
-
import streamlit.components.v1 as components
|
21 |
import streamlit_authenticator as stauth
|
22 |
-
import pickle
|
23 |
-
|
24 |
from streamlit_modal import Modal
|
25 |
-
import numpy as np
|
26 |
-
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
st.session_state.
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
document_store.
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
st.set_page_config(
|
113 |
-
page_title="
|
114 |
-
layout="centered",
|
115 |
page_icon=":shark:",
|
|
|
|
|
116 |
menu_items={
|
117 |
'Get Help': 'https://www.extremelycoolapp.com/help',
|
118 |
'Report a bug': "https://www.extremelycoolapp.com/bug",
|
119 |
'About': "# This is a header. This is an *extremely* cool app!"
|
120 |
}
|
121 |
)
|
122 |
-
st.sidebar.image("ml_logo.png", use_column_width=True)
|
123 |
|
124 |
-
authenticator = stauth.Authenticate(names, usernames, hashed_passwords, "document_search", "random_text", cookie_expiry_days=1)
|
125 |
|
126 |
-
|
|
|
|
|
127 |
|
128 |
-
if authentication_status == False:
|
129 |
-
st.error("Username/Password is incorrect")
|
130 |
|
131 |
-
|
132 |
-
|
|
|
|
|
133 |
|
134 |
-
if authentication_status:
|
135 |
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
if openai_key:
|
143 |
-
task_options = ['Extractive', 'Generative']
|
144 |
-
else:
|
145 |
-
task_options = ['Extractive']
|
146 |
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
|
150 |
-
if
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
|
157 |
|
158 |
-
modal = Modal("Manage Files", key="demo-modal")
|
159 |
-
open_modal = st.sidebar.button("Manage Files", use_container_width=True)
|
160 |
-
if open_modal:
|
161 |
-
modal.open()
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
upload_document()
|
170 |
-
st.session_state.sidebar_state = 'collapsed'
|
171 |
-
st.table(show_documents_list(document_store.get_all_documents()))
|
172 |
-
|
173 |
-
# File upload block
|
174 |
-
# if not DISABLE_FILE_UPLOAD:
|
175 |
-
# upload_container = st.sidebar.container()
|
176 |
-
# upload_container.write("## File Upload:")
|
177 |
-
# data_files = upload_files()
|
178 |
-
# Button to update files in the documentStore
|
179 |
-
# upload_container.button('Upload Files', on_click=upload_document, args=())
|
180 |
|
181 |
-
|
182 |
-
st.sidebar.button("Reset documents", on_click=reset_documents, args=(), use_container_width=True)
|
183 |
|
184 |
-
|
185 |
-
st.session_state.question = ""
|
186 |
-
# Search bar
|
187 |
-
question = st.text_input("Question", value=st.session_state.question, max_chars=100, on_change=reset_results, label_visibility="hidden")
|
188 |
|
189 |
-
run_pressed = st.button("Run")
|
190 |
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
)
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
logging.exception(e)
|
229 |
-
st.error("π An error occurred during the request.")
|
230 |
-
# Display results
|
231 |
-
if (st.session_state.results_extractive or st.session_state.results_generative) and run_query:
|
232 |
-
|
233 |
-
# Handle Extractive Answers
|
234 |
-
if task_selection == 'Extractive':
|
235 |
-
results = st.session_state.results_extractive
|
236 |
-
|
237 |
-
st.subheader("Extracted Answers:")
|
238 |
-
|
239 |
-
if 'answers' in results:
|
240 |
-
answers = results['answers']
|
241 |
-
treshold = 0.2
|
242 |
-
higher_then_treshold = any(ans.score > treshold for ans in answers)
|
243 |
-
if not higher_then_treshold:
|
244 |
-
st.markdown(f"<span style='color:red'>Please note none of the answers achieved a score higher then {int(treshold) * 100}%. Which probably means that the desired answer is not in the searched documents.</span>", unsafe_allow_html=True)
|
245 |
-
for count, answer in enumerate(answers):
|
246 |
-
if answer.answer:
|
247 |
-
text, context = answer.answer, answer.context
|
248 |
-
start_idx = context.find(text)
|
249 |
-
end_idx = start_idx + len(text)
|
250 |
-
score = round(answer.score, 3)
|
251 |
-
st.markdown(f"**Answer {count + 1}:**")
|
252 |
-
st.markdown(
|
253 |
-
context[:start_idx] + str(annotation(body=text, label=f'SCORE {score}', background='#964448', color='#ffffff')) + context[end_idx:],
|
254 |
-
unsafe_allow_html=True,
|
255 |
-
)
|
256 |
-
else:
|
257 |
-
st.info(
|
258 |
-
"π€ Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!"
|
259 |
-
)
|
260 |
-
|
261 |
-
# Handle Generative Answers
|
262 |
-
elif task_selection == 'Generative':
|
263 |
-
results = st.session_state.results_generative
|
264 |
-
st.subheader("Generated Answer:")
|
265 |
-
if 'results' in results:
|
266 |
-
st.markdown("**Answer:**")
|
267 |
-
st.write(results['results'][0])
|
268 |
-
|
269 |
-
# Handle Retrieved Documents
|
270 |
-
if 'documents' in results:
|
271 |
-
retrieved_documents = results['documents']
|
272 |
-
st.subheader("Retriever Results:")
|
273 |
-
|
274 |
-
data = []
|
275 |
-
for i, document in enumerate(retrieved_documents):
|
276 |
-
# Truncate the content
|
277 |
-
truncated_content = (document.content[:150] + '...') if len(document.content) > 150 else document.content
|
278 |
-
data.append([i + 1, document.meta['name'], truncated_content])
|
279 |
-
|
280 |
-
# Convert data to DataFrame and display using Streamlit
|
281 |
-
df = pd.DataFrame(data, columns=['Ranked Context', 'Document Name', 'Content'])
|
282 |
-
st.table(df)
|
283 |
-
except SystemExit as e:
|
284 |
-
os._exit(e.code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import pandas as pd
|
4 |
+
import streamlit as st
|
|
|
|
|
|
|
5 |
import streamlit_authenticator as stauth
|
|
|
|
|
6 |
from streamlit_modal import Modal
|
|
|
|
|
|
|
7 |
|
8 |
+
from utils import new_file, clear_memory, append_documentation_to_sidebar, load_authenticator_config, init_qa, \
|
9 |
+
append_header
|
10 |
+
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
11 |
+
from haystack import Document
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
OPENAI_MODELS = ['gpt-3.5-turbo',
|
16 |
+
"gpt-4",
|
17 |
+
"gpt-4-1106-preview"]
|
18 |
+
|
19 |
+
OPEN_MODELS = [
|
20 |
+
'mistralai/Mistral-7B-Instruct-v0.1',
|
21 |
+
'HuggingFaceH4/zephyr-7b-beta'
|
22 |
+
]
|
23 |
+
|
24 |
+
|
25 |
+
def reset_chat_memory():
|
26 |
+
st.button(
|
27 |
+
'Reset chat memory',
|
28 |
+
key="reset-memory-button",
|
29 |
+
on_click=clear_memory,
|
30 |
+
help="Clear the conversational memory. Currently implemented to retain the 4 most recent messages.",
|
31 |
+
disabled=False)
|
32 |
+
|
33 |
+
|
34 |
+
def manage_files(modal, document_store):
|
35 |
+
open_modal = st.sidebar.button("Manage Files", use_container_width=True)
|
36 |
+
if open_modal:
|
37 |
+
modal.open()
|
38 |
+
|
39 |
+
if modal.is_open():
|
40 |
+
with modal.container():
|
41 |
+
uploaded_file = st.file_uploader(
|
42 |
+
"Upload a CV in PDF format",
|
43 |
+
type=("pdf",),
|
44 |
+
on_change=new_file(),
|
45 |
+
disabled=st.session_state['document_qa_model'] is None,
|
46 |
+
label_visibility="collapsed",
|
47 |
+
help="The document is used to answer your questions. The system will process the document and store it in a RAG to answer your questions.",
|
48 |
+
)
|
49 |
+
edited_df = st.data_editor(use_container_width=True, data=st.session_state['files'],
|
50 |
+
num_rows='dynamic',
|
51 |
+
column_order=['name', 'size', 'is_active'],
|
52 |
+
column_config={'name': {'editable': False}, 'size': {'editable': False},
|
53 |
+
'is_active': {'editable': True, 'type': 'checkbox',
|
54 |
+
'width': 100}}
|
55 |
+
)
|
56 |
+
st.session_state['files'] = pd.DataFrame(columns=['name', 'content', 'size', 'is_active'])
|
57 |
+
|
58 |
+
if uploaded_file:
|
59 |
+
st.session_state['file_uploaded'] = True
|
60 |
+
st.session_state['files'] = pd.concat([st.session_state['files'], edited_df])
|
61 |
+
with st.spinner('Processing the CV content...'):
|
62 |
+
store_file_in_table(document_store, uploaded_file)
|
63 |
+
ingest_document(uploaded_file)
|
64 |
+
|
65 |
+
|
66 |
+
def ingest_document(uploaded_file):
|
67 |
+
if not st.session_state['document_qa_model']:
|
68 |
+
st.warning('Please select a model to start asking questions')
|
69 |
+
else:
|
70 |
+
try:
|
71 |
+
st.session_state['document_qa_model'].ingest_pdf(uploaded_file)
|
72 |
+
st.success('Document processed successfully')
|
73 |
+
except Exception as e:
|
74 |
+
st.error(f"Error processing the document: {e}")
|
75 |
+
st.session_state['file_uploaded'] = False
|
76 |
+
|
77 |
+
|
78 |
+
def store_file_in_table(document_store, uploaded_file):
|
79 |
+
pdf_content = uploaded_file.getvalue()
|
80 |
+
st.session_state['pdf_content'] = pdf_content
|
81 |
+
st.session_state.messages = []
|
82 |
+
document = Document(content=pdf_content, meta={"name": uploaded_file.name})
|
83 |
+
df = pd.DataFrame(st.session_state['files'])
|
84 |
+
df['is_active'] = False
|
85 |
+
st.session_state['files'] = pd.concat([df, pd.DataFrame(
|
86 |
+
[{"name": uploaded_file.name, "content": pdf_content, "size": len(pdf_content),
|
87 |
+
"is_active": True}])])
|
88 |
+
document_store.write_documents([document])
|
89 |
+
|
90 |
+
|
91 |
+
def init_session_state():
|
92 |
+
st.session_state.setdefault('files', pd.DataFrame(columns=['name', 'content', 'size', 'is_active']))
|
93 |
+
st.session_state.setdefault('models', [])
|
94 |
+
st.session_state.setdefault('api_keys', {})
|
95 |
+
st.session_state.setdefault('current_selected_model', 'gpt-3.5-turbo')
|
96 |
+
st.session_state.setdefault('current_api_key', '')
|
97 |
+
st.session_state.setdefault('messages', [])
|
98 |
+
st.session_state.setdefault('pdf_content', None)
|
99 |
+
st.session_state.setdefault('memory', None)
|
100 |
+
st.session_state.setdefault('pdf', None)
|
101 |
+
st.session_state.setdefault('document_qa_model', None)
|
102 |
+
st.session_state.setdefault('file_uploaded', False)
|
103 |
+
|
104 |
+
|
105 |
+
def set_page_config():
|
106 |
st.set_page_config(
|
107 |
+
page_title="CV Insights AI Assistant",
|
|
|
108 |
page_icon=":shark:",
|
109 |
+
initial_sidebar_state="expanded",
|
110 |
+
layout="wide",
|
111 |
menu_items={
|
112 |
'Get Help': 'https://www.extremelycoolapp.com/help',
|
113 |
'Report a bug': "https://www.extremelycoolapp.com/bug",
|
114 |
'About': "# This is a header. This is an *extremely* cool app!"
|
115 |
}
|
116 |
)
|
|
|
117 |
|
|
|
118 |
|
119 |
+
def update_running_model(api_key, model):
|
120 |
+
st.session_state['api_keys'][model] = api_key
|
121 |
+
st.session_state['document_qa_model'] = init_qa(model, api_key)
|
122 |
|
|
|
|
|
123 |
|
124 |
+
def init_api_key_dict():
|
125 |
+
st.session_state['models'] = OPENAI_MODELS + list(OPEN_MODELS) + ['local LLM']
|
126 |
+
for model_name in OPENAI_MODELS:
|
127 |
+
st.session_state['api_keys'][model_name] = None
|
128 |
|
|
|
129 |
|
130 |
+
def display_chat_messages(chat_box, chat_input):
|
131 |
+
with chat_box:
|
132 |
+
if chat_input:
|
133 |
+
for message in st.session_state.messages:
|
134 |
+
with st.chat_message(message["role"]):
|
135 |
+
st.markdown(message["content"], unsafe_allow_html=True)
|
136 |
|
137 |
+
st.chat_message("user").markdown(chat_input)
|
138 |
+
st.session_state.messages.append({"role": "user", "content": chat_input})
|
139 |
+
with st.chat_message("assistant"):
|
140 |
+
response = st.session_state['document_qa_model'].process_message(chat_input)
|
141 |
+
st.markdown(response)
|
142 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
143 |
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
def setup_model_selection():
|
146 |
+
model = st.selectbox(
|
147 |
+
"Model:",
|
148 |
+
options=st.session_state['models'],
|
149 |
+
index=0, # default to the first model in the list gpt-3.5-turbo
|
150 |
+
placeholder="Select model",
|
151 |
+
help="Select an LLM:"
|
152 |
+
)
|
153 |
|
154 |
+
if model:
|
155 |
+
if model != st.session_state['current_selected_model']:
|
156 |
+
st.session_state['current_selected_model'] = model
|
157 |
+
if model == 'local LLM':
|
158 |
+
st.session_state['document_qa_model'] = init_qa(model)
|
159 |
|
160 |
+
api_key = st.sidebar.text_input("Enter LLM-authorization Key:", type="password",
|
161 |
+
disabled=st.session_state['current_selected_model'] == 'local LLM')
|
162 |
+
if api_key and api_key != st.session_state['current_api_key']:
|
163 |
+
update_running_model(api_key, model)
|
164 |
+
st.session_state['current_api_key'] = api_key
|
165 |
|
166 |
+
return model
|
167 |
|
|
|
|
|
|
|
|
|
168 |
|
169 |
+
def setup_task_selection(model):
|
170 |
+
# enable extractive and generative tasks if we're using a local LLM or an OpenAI model with an API key
|
171 |
+
if model == 'local LLM' or st.session_state['api_keys'].get(model):
|
172 |
+
task_options = ['Extractive', 'Generative']
|
173 |
+
else:
|
174 |
+
task_options = ['Extractive']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
+
task_selection = st.sidebar.radio('Select the task:', task_options)
|
|
|
177 |
|
178 |
+
# TODO: Add the task selection logic here (initializing the model based on the task)
|
|
|
|
|
|
|
179 |
|
|
|
180 |
|
181 |
+
def setup_page_body():
|
182 |
+
chat_box = st.container(height=350, border=False)
|
183 |
+
chat_input = st.chat_input(
|
184 |
+
placeholder="Upload a document to start asking questions...",
|
185 |
+
disabled=not st.session_state['file_uploaded'],
|
186 |
+
)
|
187 |
+
if st.session_state['file_uploaded']:
|
188 |
+
display_chat_messages(chat_box, chat_input)
|
189 |
+
|
190 |
+
|
191 |
+
class StreamlitApp:
|
192 |
+
def __init__(self):
|
193 |
+
self.authenticator_config = load_authenticator_config()
|
194 |
+
self.document_store = InMemoryDocumentStore()
|
195 |
+
set_page_config()
|
196 |
+
self.authenticator = self.init_authenticator()
|
197 |
+
init_session_state()
|
198 |
+
init_api_key_dict()
|
199 |
+
|
200 |
+
def init_authenticator(self):
|
201 |
+
return stauth.Authenticate(
|
202 |
+
self.authenticator_config['credentials'],
|
203 |
+
self.authenticator_config['cookie']['name'],
|
204 |
+
self.authenticator_config['cookie']['key'],
|
205 |
+
self.authenticator_config['cookie']['expiry_days']
|
206 |
)
|
207 |
|
208 |
+
def setup_sidebar(self):
|
209 |
+
with st.sidebar:
|
210 |
+
st.sidebar.image("resources/ml_logo.png", use_column_width=True)
|
211 |
+
|
212 |
+
# Sidebar for Task Selection
|
213 |
+
st.sidebar.header('Options:')
|
214 |
+
model = setup_model_selection()
|
215 |
+
setup_task_selection(model)
|
216 |
+
st.divider()
|
217 |
+
self.authenticator.logout()
|
218 |
+
reset_chat_memory()
|
219 |
+
modal = Modal("Manage Files", key="demo-modal")
|
220 |
+
manage_files(modal, self.document_store)
|
221 |
+
st.divider()
|
222 |
+
append_documentation_to_sidebar()
|
223 |
+
|
224 |
+
def run(self):
|
225 |
+
name, authentication_status, username = self.authenticator.login()
|
226 |
+
if authentication_status:
|
227 |
+
self.run_authenticated_app()
|
228 |
+
elif st.session_state["authentication_status"] is False:
|
229 |
+
st.error('Username/password is incorrect')
|
230 |
+
elif st.session_state["authentication_status"] is None:
|
231 |
+
st.warning('Please enter your username and password')
|
232 |
+
|
233 |
+
def run_authenticated_app(self):
|
234 |
+
self.setup_sidebar()
|
235 |
+
append_header()
|
236 |
+
setup_page_body()
|
237 |
+
|
238 |
+
|
239 |
+
app = StreamlitApp()
|
240 |
+
app.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
authenticator_config.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
credentials:
|
2 |
+
usernames:
|
3 |
+
mlreply:
|
4 |
+
email: mlreply@reply.de
|
5 |
+
failed_login_attempts: 0 # Will be managed automatically
|
6 |
+
logged_in: False # Will be managed automatically
|
7 |
+
name: ML Reply
|
8 |
+
password: mlreply # Will be hashed automatically
|
9 |
+
cookie:
|
10 |
+
expiry_days: 1
|
11 |
+
key: some_signature_key # Must be string
|
12 |
+
name: some_cookie_name
|
13 |
+
#pre-authorized:
|
14 |
+
# emails:
|
15 |
+
# - melsby@gmail.com
|
document_qa_engine.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from pypdf import PdfReader
|
3 |
+
from haystack.utils import Secret
|
4 |
+
from haystack import Pipeline, Document, component
|
5 |
+
|
6 |
+
from haystack.components.preprocessors import DocumentCleaner, DocumentSplitter
|
7 |
+
from haystack.components.writers import DocumentWriter
|
8 |
+
from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
|
9 |
+
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
10 |
+
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
11 |
+
from haystack.components.builders import PromptBuilder
|
12 |
+
from haystack.components.generators.chat import OpenAIChatGenerator, HuggingFaceTGIChatGenerator
|
13 |
+
from haystack.components.generators import OpenAIGenerator, HuggingFaceTGIGenerator
|
14 |
+
from haystack.document_stores.types import DuplicatePolicy
|
15 |
+
|
16 |
+
SENTENCE_RETREIVER_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
17 |
+
|
18 |
+
MAX_TOKENS = 500
|
19 |
+
|
20 |
+
template = """
|
21 |
+
As a professional HR recruiter given the following information, answer the question shortly and concisely in 1 or 2 sentences.
|
22 |
+
|
23 |
+
Context:
|
24 |
+
{% for document in documents %}
|
25 |
+
{{ document.content }}
|
26 |
+
{% endfor %}
|
27 |
+
|
28 |
+
Question: {{question}}
|
29 |
+
Answer:
|
30 |
+
"""
|
31 |
+
|
32 |
+
|
33 |
+
@component
|
34 |
+
class UploadedFileConverter:
|
35 |
+
"""
|
36 |
+
A component to convert uploaded PDF files to Documents
|
37 |
+
"""
|
38 |
+
|
39 |
+
@component.output_types(documents=List[Document])
|
40 |
+
def run(self, uploaded_file):
|
41 |
+
pdf = PdfReader(uploaded_file)
|
42 |
+
documents = []
|
43 |
+
# uploaded file name without .pdf at the end and with _ and page number at the end
|
44 |
+
name = uploaded_file.name.rstrip('.PDF') + '_'
|
45 |
+
for page in pdf.pages:
|
46 |
+
documents.append(
|
47 |
+
Document(
|
48 |
+
content=page.extract_text(),
|
49 |
+
meta={'name': name + f"_{page.page_number}"}))
|
50 |
+
return {"documents": documents}
|
51 |
+
|
52 |
+
|
53 |
+
def create_ingestion_pipeline(document_store):
|
54 |
+
doc_embedder = SentenceTransformersDocumentEmbedder(model=SENTENCE_RETREIVER_MODEL)
|
55 |
+
doc_embedder.warm_up()
|
56 |
+
|
57 |
+
pipeline = Pipeline()
|
58 |
+
pipeline.add_component("converter", UploadedFileConverter())
|
59 |
+
pipeline.add_component("cleaner", DocumentCleaner())
|
60 |
+
pipeline.add_component("splitter",
|
61 |
+
DocumentSplitter(split_by="passage", split_length=100, split_overlap=10))
|
62 |
+
pipeline.add_component("embedder", doc_embedder)
|
63 |
+
pipeline.add_component("writer",
|
64 |
+
DocumentWriter(document_store=document_store, policy=DuplicatePolicy.OVERWRITE))
|
65 |
+
|
66 |
+
pipeline.connect("converter", "cleaner")
|
67 |
+
pipeline.connect("cleaner", "splitter")
|
68 |
+
pipeline.connect("splitter", "embedder")
|
69 |
+
pipeline.connect("embedder", "writer")
|
70 |
+
return pipeline
|
71 |
+
|
72 |
+
|
73 |
+
def create_query_pipeline(document_store, model_name, api_key):
|
74 |
+
prompt_builder = PromptBuilder(template=template)
|
75 |
+
if model_name == "local LLM":
|
76 |
+
generator = OpenAIGenerator(model=model_name,
|
77 |
+
api_base_url="http://localhost:1234/v1",
|
78 |
+
generation_kwargs={"max_tokens": MAX_TOKENS}
|
79 |
+
)
|
80 |
+
elif "gpt" in model_name:
|
81 |
+
generator = OpenAIGenerator(api_key=Secret.from_token(api_key), model=model_name,
|
82 |
+
generation_kwargs={"max_tokens": MAX_TOKENS}
|
83 |
+
)
|
84 |
+
else:
|
85 |
+
generator = HuggingFaceTGIGenerator(token=Secret.from_token(api_key), model=model_name,
|
86 |
+
generation_kwargs={"max_new_tokens": MAX_TOKENS}
|
87 |
+
)
|
88 |
+
|
89 |
+
query_pipeline = Pipeline()
|
90 |
+
query_pipeline.add_component("text_embedder",
|
91 |
+
SentenceTransformersTextEmbedder(model=SENTENCE_RETREIVER_MODEL))
|
92 |
+
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store, top_k=3))
|
93 |
+
query_pipeline.add_component("prompt_builder", prompt_builder)
|
94 |
+
query_pipeline.add_component("generator", generator)
|
95 |
+
|
96 |
+
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
|
97 |
+
query_pipeline.connect("retriever.documents", "prompt_builder.documents")
|
98 |
+
query_pipeline.connect("prompt_builder", "generator")
|
99 |
+
|
100 |
+
return query_pipeline
|
101 |
+
|
102 |
+
|
103 |
+
class DocumentQAEngine:
|
104 |
+
def __init__(self,
|
105 |
+
model_name,
|
106 |
+
api_key=None
|
107 |
+
):
|
108 |
+
self.api_key = api_key
|
109 |
+
self.model_name = model_name
|
110 |
+
document_store = InMemoryDocumentStore()
|
111 |
+
self.chunks = []
|
112 |
+
self.query_pipeline = create_query_pipeline(document_store, model_name, api_key)
|
113 |
+
self.pdf_ingestion_pipeline = create_ingestion_pipeline(document_store)
|
114 |
+
|
115 |
+
def ingest_pdf(self, uploaded_file):
|
116 |
+
self.pdf_ingestion_pipeline.run({"converter": {"uploaded_file": uploaded_file}})
|
117 |
+
|
118 |
+
def process_message(self, query):
|
119 |
+
response = self.query_pipeline.run({"text_embedder": {"text": query}, "prompt_builder": {"question": query}})
|
120 |
+
return response["generator"]["replies"][0]
|
generate_keys.py
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
|
3 |
-
import pickle
|
4 |
-
from pathlib import Path
|
5 |
-
|
6 |
-
import streamlit_authenticator as stauth
|
7 |
-
|
8 |
-
names = ['mlreply']
|
9 |
-
usernames = ['mlreply']
|
10 |
-
passwords = ['mlreply1']
|
11 |
-
|
12 |
-
hashed_passwords = stauth.Hasher((passwords)).generate()
|
13 |
-
|
14 |
-
with open('hashed_password.pkl','wb') as f:
|
15 |
-
pickle.dump(hashed_passwords, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hashed_password.pkl
DELETED
Binary file (78 Bytes)
|
|
requirements.txt
CHANGED
@@ -1,10 +1,18 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
streamlit==
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Streamlit
|
2 |
+
streamlit~=1.32.2
|
3 |
+
streamlit-modal==0.1.2
|
4 |
+
streamlit-authenticator==0.3.2
|
5 |
+
streamlit-pdf-viewer==0.0.9
|
6 |
+
|
7 |
+
# LLM
|
8 |
+
haystack-ai~=2.0.0
|
9 |
+
sentence_transformers~=2.6.0
|
10 |
+
|
11 |
+
# Utils
|
12 |
+
pandas~=2.2.1
|
13 |
+
pypdf~=4.2.0
|
14 |
+
pytest~=8.1.1
|
15 |
+
python-dotenv~=1.0.1
|
16 |
+
|
17 |
+
# Dev Utils
|
18 |
+
watchdog
|
ml_logo.png β resources/ml_logo.png
RENAMED
File without changes
|
utils.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from document_qa_engine import DocumentQAEngine
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
import logging
|
6 |
+
from yaml import load, SafeLoader, YAMLError
|
7 |
+
|
8 |
+
|
9 |
+
def load_authenticator_config(file_path='authenticator_config.yaml'):
|
10 |
+
try:
|
11 |
+
with open(file_path, 'r') as file:
|
12 |
+
authenticator_config = load(file, Loader=SafeLoader)
|
13 |
+
return authenticator_config
|
14 |
+
except FileNotFoundError:
|
15 |
+
logging.error(f"File {file_path} not found.")
|
16 |
+
except YAMLError as error:
|
17 |
+
logging.error(f"Error parsing YAML file: {error}")
|
18 |
+
|
19 |
+
|
20 |
+
def new_file():
|
21 |
+
st.session_state['loaded_embeddings'] = None
|
22 |
+
st.session_state['doc_id'] = None
|
23 |
+
st.session_state['uploaded'] = True
|
24 |
+
clear_memory()
|
25 |
+
|
26 |
+
|
27 |
+
def clear_memory():
|
28 |
+
if st.session_state['memory']:
|
29 |
+
st.session_state['memory'].clear()
|
30 |
+
|
31 |
+
|
32 |
+
def init_qa(model, api_key=None):
|
33 |
+
print(f"Initializing QA with model: {model} and API key: {api_key}")
|
34 |
+
return DocumentQAEngine(model, api_key=api_key)
|
35 |
+
|
36 |
+
|
37 |
+
def append_header():
|
38 |
+
_, header_container, _ = st.columns([0.25, 0.5, 0.25])
|
39 |
+
with header_container:
|
40 |
+
st.header('π Document Insights :rainbow[AI] Assistant π', divider='rainbow')
|
41 |
+
st.text("π₯ Upload documents in PDF format. Get insights.. ask questions..")
|
42 |
+
|
43 |
+
|
44 |
+
def append_documentation_to_sidebar():
|
45 |
+
with st.expander("Disclaimer"):
|
46 |
+
st.markdown(
|
47 |
+
"""
|
48 |
+
:warning: Do not upload sensitive data. We **temporarily** store text from the uploaded PDF documents solely
|
49 |
+
for the purpose of processing your request, and we **do not assume responsibility** for any subsequent use
|
50 |
+
or handling of the data submitted to third parties LLMs.
|
51 |
+
""")
|
52 |
+
with st.expander("Documentation"):
|
53 |
+
st.markdown(
|
54 |
+
"""
|
55 |
+
Upload a CV as PDF document. Once the spinner stops, you can proceed to ask your questions. The answers will
|
56 |
+
be displayed in the right column. The system will answer your questions using the content of the document
|
57 |
+
and mark refrences over the PDF viewer.
|
58 |
+
""")
|