Spaces:
Sleeping
Sleeping
Henryk Borzymowski
commited on
Commit
·
8329090
0
Parent(s):
initial push
Browse files- .DS_Store +0 -0
- README.md +111 -0
- app.py +85 -0
- requirements.txt +7 -0
- utils/__pycache__/config.cpython-310.pyc +0 -0
- utils/__pycache__/haystack.cpython-310.pyc +0 -0
- utils/__pycache__/ui.cpython-310.pyc +0 -0
- utils/config.py +43 -0
- utils/haystack.py +84 -0
- utils/ui.py +12 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Haystack Search Pipeline with Streamlit
|
3 |
+
emoji: 👑
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.23.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
# Template Streamlit App for Haystack Search Pipelines
|
13 |
+
|
14 |
+
This template [Streamlit](https://docs.streamlit.io/) app set up for simple [Haystack search applications](https://docs.haystack.deepset.ai/docs/semantic_search). The template is ready to do QA with **Retrievel Augmented Generation**, or **Ectractive QA**
|
15 |
+
|
16 |
+
See the ['How to use this template'](#how-to-use-this-template) instructions below to create a simple UI for your own Haystack search pipelines.
|
17 |
+
|
18 |
+
Below you will also find instructions on how you could [push this to Hugging Face Spaces 🤗](#pushing-to-hugging-face-spaces-).
|
19 |
+
|
20 |
+
## Installation and Running
|
21 |
+
To run the bare application which does _nothing_:
|
22 |
+
1. Install requirements: `pip install -r requirements.txt`
|
23 |
+
2. Run the streamlit app: `streamlit run app.py`
|
24 |
+
|
25 |
+
This will start up the app on `localhost:8501` where you will find a simple search bar. Before you start editing, you'll notice that the app will only show you instructions on what to edit.
|
26 |
+
|
27 |
+
### Optional Configurations
|
28 |
+
|
29 |
+
You can set optional cofigurations to set the:
|
30 |
+
- `--task` you want to start the app with: `rag` or `extractive` (default: rag)
|
31 |
+
- `--store` you want to use: `inmemory`, `opensearch`, `weaviate` or `milvus` (default: inmemory)
|
32 |
+
- `--name` you want to have for the app. (default: 'My Search App')
|
33 |
+
|
34 |
+
E.g.:
|
35 |
+
|
36 |
+
```bash
|
37 |
+
streamlit run app.py -- --store opensearch --task extractive --name 'My Opensearch Documentation Search'
|
38 |
+
```
|
39 |
+
|
40 |
+
In a `.env` file, include all the config settings that you would like to use based on:
|
41 |
+
- The DocumentStore of your choice
|
42 |
+
- The Extractive/Generative model of your choice
|
43 |
+
|
44 |
+
While the `/utils/config.py` will create default values for some configurations, others have to be set in the `.env` such as the `OPENAI_KEY`
|
45 |
+
|
46 |
+
Example `.env`
|
47 |
+
|
48 |
+
```
|
49 |
+
OPENAI_KEY=YOUR_KEY
|
50 |
+
EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L12-v2
|
51 |
+
GENERATIVE_MODEL=text-davinci-003
|
52 |
+
```
|
53 |
+
|
54 |
+
|
55 |
+
## How to use this template
|
56 |
+
1. Create a new repository from this template or simply open it in a codespace to start playing around 💙
|
57 |
+
2. Make sure your `requirements.txt` file includes the Haystack and Streamlit versions you would like to use.
|
58 |
+
3. Change the code in `utils/haystack.py` if you would like a different pipeline.
|
59 |
+
4. Create a `.env`file with all of your configuration settings.
|
60 |
+
5. Make any UI edits you'd like to and [share with the Haystack community](https://haystack.deepeset.ai/community)
|
61 |
+
6. Run the app as show in [installation and running](#installation-and-running)
|
62 |
+
|
63 |
+
### Repo structure
|
64 |
+
- `./utils`: This is where we have 3 files:
|
65 |
+
- `config.py`: This file extracts all of the configuration settings from a `.env` file. For some config settings, it uses default values. An example of this is in [this demo project](https://github.com/TuanaCelik/should-i-follow/blob/main/utils/config.py).
|
66 |
+
- `haystack.py`: Here you will find some functions already set up for you to start creating your Haystack search pipeline. It includes 2 main functions called `start_haystack()` which is what we use to create a pipeline and cache it, and `query()` which is the function called by `app.py` once a user query is received.
|
67 |
+
- `ui.py`: Use this file for any UI and initial value setups.
|
68 |
+
- `app.py`: This is the main Streamlit application file that we will run. In its current state it has a simple search bar, a 'Run' button, and a response that you can highlight answers with.
|
69 |
+
|
70 |
+
### What to edit?
|
71 |
+
There are default pipelines both in `start_haystack_extractive()` and `start_haystack_rag()`
|
72 |
+
|
73 |
+
- Change the pipelines to use the embedding models, extractive or generative models as you need.
|
74 |
+
- If using the `rag` task, change the `default_prompt_template` to use one of our available ones on [PromptHub](https://prompthub.deepset.ai) or create your own `PromptTemplate`
|
75 |
+
|
76 |
+
|
77 |
+
## Pushing to Hugging Face Spaces 🤗
|
78 |
+
|
79 |
+
Below is an example GitHub action that will let you push your Streamlit app straight to the Hugging Face Hub as a Space.
|
80 |
+
|
81 |
+
A few things to pay attention to:
|
82 |
+
|
83 |
+
1. Create a New Space on Hugging Face with the Streamlit SDK.
|
84 |
+
2. Create a Hugging Face token on your HF account.
|
85 |
+
3. Create a secret on your GitHub repo called `HF_TOKEN` and put your Hugging Face token here.
|
86 |
+
4. If you're using DocumentStores or APIs that require some keys/tokens, make sure these are provided as a secret for your HF Space too!
|
87 |
+
5. This readme is set up to tell HF spaces that it's using streamlit and that the app is running on `app.py`, make any changes to the frontmatter of this readme to display the title, emoji etc you desire.
|
88 |
+
6. Create a file in `.github/workflows/hf_sync.yml`. Here's an example that you can change with your own information, and an [example workflow](https://github.com/TuanaCelik/should-i-follow/blob/main/.github/workflows/hf_sync.yml) working for the [Should I Follow demo](https://huggingface.co/spaces/deepset/should-i-follow)
|
89 |
+
|
90 |
+
```yaml
|
91 |
+
name: Sync to Hugging Face hub
|
92 |
+
on:
|
93 |
+
push:
|
94 |
+
branches: [main]
|
95 |
+
|
96 |
+
# to run this workflow manually from the Actions tab
|
97 |
+
workflow_dispatch:
|
98 |
+
|
99 |
+
jobs:
|
100 |
+
sync-to-hub:
|
101 |
+
runs-on: ubuntu-latest
|
102 |
+
steps:
|
103 |
+
- uses: actions/checkout@v2
|
104 |
+
with:
|
105 |
+
fetch-depth: 0
|
106 |
+
lfs: true
|
107 |
+
- name: Push to hub
|
108 |
+
env:
|
109 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
110 |
+
run: git push --force https://{YOUR_HF_USERNAME}:$HF_TOKEN@{YOUR_HF_SPACE_REPO} main
|
111 |
+
```
|
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
|
6 |
+
from annotated_text import annotation
|
7 |
+
from json import JSONDecodeError
|
8 |
+
from markdown import markdown
|
9 |
+
from utils.config import parser
|
10 |
+
from utils.haystack import start_document_store, start_haystack_extractive, start_haystack_rag, query
|
11 |
+
from utils.ui import reset_results, set_initial_state
|
12 |
+
|
13 |
+
try:
|
14 |
+
args = parser.parse_args()
|
15 |
+
document_store = start_document_store(type = args.store)
|
16 |
+
if args.task == 'extractive':
|
17 |
+
pipeline = start_haystack_extractive(document_store)
|
18 |
+
else:
|
19 |
+
pipeline = start_haystack_rag(document_store)
|
20 |
+
|
21 |
+
set_initial_state()
|
22 |
+
|
23 |
+
st.write('# '+args.name)
|
24 |
+
|
25 |
+
# Search bar
|
26 |
+
question = st.text_input("Ask a question", value=st.session_state.question, max_chars=100, on_change=reset_results)
|
27 |
+
#question = "what is Pi?"
|
28 |
+
|
29 |
+
run_pressed = st.button("Run")
|
30 |
+
#run_pressed = True
|
31 |
+
|
32 |
+
run_query = (
|
33 |
+
run_pressed or question != st.session_state.question
|
34 |
+
)
|
35 |
+
|
36 |
+
# Get results for query
|
37 |
+
if run_query and question:
|
38 |
+
reset_results()
|
39 |
+
st.session_state.question = question
|
40 |
+
with st.spinner("🔎 Running your pipeline"):
|
41 |
+
try:
|
42 |
+
st.session_state.results = query(pipeline, question)
|
43 |
+
except JSONDecodeError as je:
|
44 |
+
st.error(
|
45 |
+
"👓 An error occurred reading the results. Is the document store working?"
|
46 |
+
)
|
47 |
+
except Exception as e:
|
48 |
+
logging.exception(e)
|
49 |
+
st.error("🐞 An error occurred during the request.")
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
if st.session_state.results:
|
54 |
+
results = st.session_state.results
|
55 |
+
|
56 |
+
if args.task == 'extractive':
|
57 |
+
answers = results['answers']
|
58 |
+
for count, answer in enumerate(answers):
|
59 |
+
if answer.answer:
|
60 |
+
text, context = answer.answer, answer.context
|
61 |
+
start_idx = context.find(text)
|
62 |
+
end_idx = start_idx + len(text)
|
63 |
+
st.write(
|
64 |
+
f" Answer: {markdown(context[:start_idx] + str(annotation(body=text, label='ANSWER', background='#964448', color='#ffffff')) + context[end_idx:])}",
|
65 |
+
unsafe_allow_html=True,
|
66 |
+
)
|
67 |
+
else:
|
68 |
+
st.info(
|
69 |
+
"🤔 Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!"
|
70 |
+
)
|
71 |
+
elif args.task == 'rag':
|
72 |
+
st.write(f" Answer: {results['results'][0]}")
|
73 |
+
|
74 |
+
# Extract and display information from the 'documents' list
|
75 |
+
retrieved_documents = results['documents']
|
76 |
+
st.subheader("Retriever Results:")
|
77 |
+
for document in retrieved_documents:
|
78 |
+
st.write(f"Document Name: {document.meta['name']}")
|
79 |
+
st.write(f"Score: {document.score}")
|
80 |
+
st.write(f"Text: {document.content}")
|
81 |
+
except SystemExit as e:
|
82 |
+
# This exception will be raised if --help or invalid command line arguments
|
83 |
+
# are used. Currently streamlit prevents the program from exiting normally
|
84 |
+
# so we have to do a hard exit.
|
85 |
+
os._exit(e.code)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
safetensors==0.3.3.post1
|
2 |
+
farm-haystack[inference,weaviate,opensearch]==1.20.0
|
3 |
+
milvus-haystack
|
4 |
+
streamlit==1.23.0
|
5 |
+
markdown
|
6 |
+
st-annotated-text
|
7 |
+
datasets
|
utils/__pycache__/config.cpython-310.pyc
ADDED
Binary file (1.61 kB). View file
|
|
utils/__pycache__/haystack.cpython-310.pyc
ADDED
Binary file (2.88 kB). View file
|
|
utils/__pycache__/ui.cpython-310.pyc
ADDED
Binary file (678 Bytes). View file
|
|
utils/config.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
load_dotenv()
|
7 |
+
parser = argparse.ArgumentParser(description='This app lists animals')
|
8 |
+
|
9 |
+
document_store_choices = ('inmemory', 'weaviate', 'milvus', 'opensearch')
|
10 |
+
task_choices = ('extractive', 'rag')
|
11 |
+
parser.add_argument('--store', choices=document_store_choices, default='inmemory', help='DocumentStore selection (default: %(default)s)')
|
12 |
+
parser.add_argument('--task', choices=task_choices, default='rag', help='Task selection (default: %(default)s)')
|
13 |
+
parser.add_argument('--name', default="My Search App")
|
14 |
+
|
15 |
+
model_configs = {
|
16 |
+
'EMBEDDING_MODEL': os.getenv("EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L12-v2"),
|
17 |
+
'GENERATIVE_MODEL': os.getenv("GENERATIVE_MODEL", "gpt-4"),
|
18 |
+
'EXTRACTIVE_MODEL': os.getenv("EXTRACTIVE_MODEL", "deepset/roberta-base-squad2"),
|
19 |
+
'OPENAI_KEY': os.getenv("OPENAI_KEY"),
|
20 |
+
'COHERE_KEY': os.getenv("COHERE_KEY"),
|
21 |
+
}
|
22 |
+
|
23 |
+
document_store_configs = {
|
24 |
+
# Weaviate Config
|
25 |
+
'WEAVIATE_HOST': os.getenv("WEAVIATE_HOST", "http://localhost"),
|
26 |
+
'WEAVIATE_PORT': os.getenv("WEAVIATE_PORT", 8080),
|
27 |
+
'WEAVIATE_INDEX': os.getenv("WEAVIATE_INDEX", "Document"),
|
28 |
+
'WEAVIATE_EMBEDDING_DIM': os.getenv("WEAVIATE_EMBEDDING_DIM", 768),
|
29 |
+
|
30 |
+
# OpenSearch Config
|
31 |
+
'OPENSEARCH_SCHEME': os.getenv("OPENSEARCH_SCHEME", "https"),
|
32 |
+
'OPENSEARCH_USERNAME': os.getenv("OPENSEARCH_USERNAME", "admin"),
|
33 |
+
'OPENSEARCH_PASSWORD': os.getenv("OPENSEARCH_PASSWORD", "admin"),
|
34 |
+
'OPENSEARCH_HOST': os.getenv("OPENSEARCH_HOST", "localhost"),
|
35 |
+
'OPENSEARCH_PORT': os.getenv("OPENSEARCH_PORT", 9200),
|
36 |
+
'OPENSEARCH_INDEX': os.getenv("OPENSEARCH_INDEX", "document"),
|
37 |
+
'OPENSEARCH_EMBEDDING_DIM': os.getenv("OPENSEARCH_EMBEDDING_DIM", 768),
|
38 |
+
|
39 |
+
# Milvus Config
|
40 |
+
'MILVUS_URI': os.getenv("MILVUS_URI", "http://localhost:19530/default"),
|
41 |
+
'MILVUS_INDEX': os.getenv("MILVUS_INDEX", "document"),
|
42 |
+
'MILVUS_EMBEDDING_DIM': os.getenv("MILVUS_EMBEDDING_DIM", 768),
|
43 |
+
}
|
utils/haystack.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from utils.config import document_store_configs, model_configs
|
4 |
+
from haystack import Pipeline
|
5 |
+
from haystack.schema import Answer
|
6 |
+
from haystack.document_stores import BaseDocumentStore
|
7 |
+
from haystack.document_stores import InMemoryDocumentStore, OpenSearchDocumentStore, WeaviateDocumentStore
|
8 |
+
from haystack.nodes import EmbeddingRetriever, FARMReader, PromptNode
|
9 |
+
from milvus_haystack import MilvusDocumentStore
|
10 |
+
#Use this file to set up your Haystack pipeline and querying
|
11 |
+
|
12 |
+
@st.cache_resource(show_spinner=False)
|
13 |
+
def start_document_store(type: str):
|
14 |
+
#This function starts the documents store of your choice based on your command line preference
|
15 |
+
if type == 'inmemory':
|
16 |
+
document_store = InMemoryDocumentStore(use_bm25=True, embedding_dim=384)
|
17 |
+
documents = [
|
18 |
+
{
|
19 |
+
'content': "Pi is a super dog",
|
20 |
+
'meta': {'name': "pi.txt"}
|
21 |
+
},
|
22 |
+
{
|
23 |
+
'content': "The revenue of siemens is 5 milion Euro",
|
24 |
+
'meta': {'name': "siemens.txt"}
|
25 |
+
},
|
26 |
+
]
|
27 |
+
document_store.write_documents(documents)
|
28 |
+
elif type == 'opensearch':
|
29 |
+
document_store = OpenSearchDocumentStore(scheme = document_store_configs['OPENSEARCH_SCHEME'],
|
30 |
+
username = document_store_configs['OPENSEARCH_USERNAME'],
|
31 |
+
password = document_store_configs['OPENSEARCH_PASSWORD'],
|
32 |
+
host = document_store_configs['OPENSEARCH_HOST'],
|
33 |
+
port = document_store_configs['OPENSEARCH_PORT'],
|
34 |
+
index = document_store_configs['OPENSEARCH_INDEX'],
|
35 |
+
embedding_dim = document_store_configs['OPENSEARCH_EMBEDDING_DIM'])
|
36 |
+
elif type == 'weaviate':
|
37 |
+
document_store = WeaviateDocumentStore(host = document_store_configs['WEAVIATE_HOST'],
|
38 |
+
port = document_store_configs['WEAVIATE_PORT'],
|
39 |
+
index = document_store_configs['WEAVIATE_INDEX'],
|
40 |
+
embedding_dim = document_store_configs['WEAVIATE_EMBEDDING_DIM'])
|
41 |
+
elif type == 'milvus':
|
42 |
+
document_store = MilvusDocumentStore(uri = document_store_configs['MILVUS_URI'],
|
43 |
+
index = document_store_configs['MILVUS_INDEX'],
|
44 |
+
embedding_dim = document_store_configs['MILVUS_EMBEDDING_DIM'],
|
45 |
+
return_embedding=True)
|
46 |
+
return document_store
|
47 |
+
|
48 |
+
# cached to make index and models load only at start
|
49 |
+
@st.cache_resource(show_spinner=False)
|
50 |
+
def start_haystack_extractive(_document_store: BaseDocumentStore):
|
51 |
+
retriever = EmbeddingRetriever(document_store=_document_store,
|
52 |
+
embedding_model=model_configs['EMBEDDING_MODEL'],
|
53 |
+
top_k=5)
|
54 |
+
_document_store.update_embeddings(retriever)
|
55 |
+
|
56 |
+
reader = FARMReader(model_name_or_path=model_configs['EXTRACTIVE_MODEL'])
|
57 |
+
|
58 |
+
pipe = Pipeline()
|
59 |
+
pipe.add_node(component=retriever, name="Retriever", inputs=["Query"])
|
60 |
+
pipe.add_node(component=reader, name="Reader", inputs=["Retriever"])
|
61 |
+
|
62 |
+
return pipe
|
63 |
+
|
64 |
+
@st.cache_resource(show_spinner=False)
|
65 |
+
def start_haystack_rag(_document_store: BaseDocumentStore):
|
66 |
+
retriever = EmbeddingRetriever(document_store=_document_store,
|
67 |
+
embedding_model=model_configs['EMBEDDING_MODEL'],
|
68 |
+
top_k=5)
|
69 |
+
_document_store.update_embeddings(retriever)
|
70 |
+
prompt_node = PromptNode(default_prompt_template="deepset/question-answering",
|
71 |
+
model_name_or_path=model_configs['GENERATIVE_MODEL'],
|
72 |
+
api_key=model_configs['OPENAI_KEY'])
|
73 |
+
pipe = Pipeline()
|
74 |
+
|
75 |
+
pipe.add_node(component=retriever, name="Retriever", inputs=["Query"])
|
76 |
+
pipe.add_node(component=prompt_node, name="PromptNode", inputs=["Retriever"])
|
77 |
+
|
78 |
+
return pipe
|
79 |
+
|
80 |
+
@st.cache_data(show_spinner=True)
|
81 |
+
def query(_pipeline, question):
|
82 |
+
params = {}
|
83 |
+
results = _pipeline.run(question, params=params)
|
84 |
+
return results
|
utils/ui.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
def set_state_if_absent(key, value):
|
4 |
+
if key not in st.session_state:
|
5 |
+
st.session_state[key] = value
|
6 |
+
|
7 |
+
def set_initial_state():
|
8 |
+
set_state_if_absent("question", "Ask something here?")
|
9 |
+
set_state_if_absent("results", None)
|
10 |
+
|
11 |
+
def reset_results(*args):
|
12 |
+
st.session_state.results = None
|