MadhurGarg's picture
Update app.py
480a26b
raw
history blame
4.47 kB
import os
import pickle
from contextlib import nullcontext
import torch
import tiktoken
from model import GPTConfig, GPT
import gradio as gr
def nanogpt(start:str , max_new_tokens = 500, num_samples =2):
# -----------------------------------------------------------------------------
init_from = 'resume' # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
seed = 1337
device = 'cpu' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16'
compile = False # use PyTorch 2.0 to compile the model to be faster
#exec(open('configurator.py').read()) # overrides from command line or config file
# -----------------------------------------------------------------------------
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
# model
if init_from == 'resume':
# init from a model saved in a specific directory
ckpt_path = 'ckpt.pt'
checkpoint = torch.load(ckpt_path, map_location=device)
gptconf = GPTConfig(**checkpoint['model_args'])
model = GPT(gptconf)
state_dict = checkpoint['model']
unwanted_prefix = '_orig_mod.'
for k,v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict)
model.eval()
model.to(device)
if compile:
model = torch.compile(model) # requires PyTorch 2.0 (optional)
# look for the meta pickle in case it is available in the dataset folder
load_meta = False
if init_from == 'resume' and 'config' in checkpoint and 'dataset' in checkpoint['config']: # older checkpoints might not have these...
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
load_meta = os.path.exists(meta_path)
if load_meta:
print(f"Loading meta from {meta_path}...")
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
# TODO want to make this more general to arbitrary encoder/decoder schemes
stoi, itos = meta['stoi'], meta['itos']
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])
else:
# ok let's assume gpt-2 encodings by default
print("No meta.pkl found, assuming GPT-2 encodings...")
enc = tiktoken.get_encoding("gpt2")
encode = lambda s: enc.encode(s, allowed_special={"<|endoftext|>"})
decode = lambda l: enc.decode(l)
start_ids = encode(start)
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
# run generation
with torch.no_grad():
with ctx:
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
#print(decode(y[0].tolist()))
output = decode(y[0].tolist())
return output
INTERFACE = gr.Interface(fn=nanogpt, inputs=[gr.Textbox(label= "Prompt", value= 'All that glisters is not gold.'),
gr.Slider(minimum = 300, maximum = 500, value= 300, label= "Maximum number of tokens to be generated")] ,
outputs=gr.Text(label= "Generated Text"), title="NanoGPT",
description="NanoGPT is a transformer-based language model with only 10.65 million parameters, trained on a small dataset of Shakespeare work (size: 1MB only). It is trained with character level tokenization with a simple objective: predict the next char, given all of the previous chars within a text.",
examples = [['We know what we are, but know not what we may be',300],
['Sweet are the uses of adversity which, like the toad, ugly and venomous, wears yet a precious jewel in his head',300],]
).launch(debug=True)