RashiAgarwal commited on
Commit
d59d2fe
1 Parent(s): 8cbd6e9

Upload 5 files

Browse files
data/shakespeare_char/input.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/shakespeare_char/meta.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ee5a37533af83b67fcbe6b93705fde9e15e78bafe895f54b2cb2cb32534526c
3
+ size 703
data/shakespeare_char/prepare.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Prepare the Shakespeare dataset for character-level language modeling.
3
+ So instead of encoding with GPT-2 BPE tokens, we just map characters to ints.
4
+ Will save train.bin, val.bin containing the ids, and meta.pkl containing the
5
+ encoder and decoder and some other related info.
6
+ """
7
+ import os
8
+ import pickle
9
+ import requests
10
+ import numpy as np
11
+
12
+ # download the tiny shakespeare dataset
13
+ input_file_path = os.path.join(os.path.dirname(__file__), 'input.txt')
14
+ if not os.path.exists(input_file_path):
15
+ data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt'
16
+ with open(input_file_path, 'w') as f:
17
+ f.write(requests.get(data_url).text)
18
+
19
+ with open(input_file_path, 'r') as f:
20
+ data = f.read()
21
+ print(f"length of dataset in characters: {len(data):,}")
22
+
23
+ # get all the unique characters that occur in this text
24
+ chars = sorted(list(set(data)))
25
+ vocab_size = len(chars)
26
+ print("all the unique characters:", ''.join(chars))
27
+ print(f"vocab size: {vocab_size:,}")
28
+
29
+ # create a mapping from characters to integers
30
+ stoi = { ch:i for i,ch in enumerate(chars) }
31
+ itos = { i:ch for i,ch in enumerate(chars) }
32
+ def encode(s):
33
+ return [stoi[c] for c in s] # encoder: take a string, output a list of integers
34
+ def decode(l):
35
+ return ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
36
+
37
+ # create the train and test splits
38
+ n = len(data)
39
+ train_data = data[:int(n*0.9)]
40
+ val_data = data[int(n*0.9):]
41
+
42
+ # encode both to integers
43
+ train_ids = encode(train_data)
44
+ val_ids = encode(val_data)
45
+ print(f"train has {len(train_ids):,} tokens")
46
+ print(f"val has {len(val_ids):,} tokens")
47
+
48
+ # export to bin files
49
+ train_ids = np.array(train_ids, dtype=np.uint16)
50
+ val_ids = np.array(val_ids, dtype=np.uint16)
51
+ train_ids.tofile(os.path.join(os.path.dirname(__file__), 'train.bin'))
52
+ val_ids.tofile(os.path.join(os.path.dirname(__file__), 'val.bin'))
53
+
54
+ # save the meta information as well, to help us encode/decode later
55
+ meta = {
56
+ 'vocab_size': vocab_size,
57
+ 'itos': itos,
58
+ 'stoi': stoi,
59
+ }
60
+ with open(os.path.join(os.path.dirname(__file__), 'meta.pkl'), 'wb') as f:
61
+ pickle.dump(meta, f)
62
+
63
+ # length of dataset in characters: 1115394
64
+ # all the unique characters:
65
+ # !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
66
+ # vocab size: 65
67
+ # train has 1003854 tokens
68
+ # val has 111540 tokens
data/shakespeare_char/train.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ec305602a99ac2802745a134e1f5e33e2231b4855525b00b9aebb730ac2626f
3
+ size 2007708
data/shakespeare_char/val.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d37d30cc0c8327c270d493299c3dca54135f6d5f1c9ef60cda78076e311204b1
3
+ size 223080