Spaces:
Running
on
Zero
Running
on
Zero
import base64 | |
import os | |
import tempfile | |
import fitz | |
import gradio as gr | |
import spaces | |
import torch | |
from PIL import Image, ImageEnhance | |
from transformers import AutoModel, AutoTokenizer | |
model_name = "ucaslcl/GOT-OCR2_0" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, device_map=device) | |
model = model.eval().to(device) | |
def pdf_to_images(pdf_path): | |
images = [] | |
pdf_document = fitz.open(pdf_path) | |
for page_num in range(len(pdf_document)): | |
page = pdf_document.load_page(page_num) | |
zoom = 10 # 增加缩放比例到10 | |
mat = fitz.Matrix(zoom, zoom) | |
pix = page.get_pixmap(matrix=mat, alpha=False) | |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
# 增对比度 | |
enhancer = ImageEnhance.Contrast(img) | |
img = enhancer.enhance(1.5) # 增加50%的对比度 | |
images.append(img) | |
pdf_document.close() | |
return images | |
def ocr_process(file, got_mode, ocr_color="", ocr_box="", progress=gr.Progress()): | |
if file is None: | |
return "错误:未提供文件" | |
try: | |
progress(0, desc="开始处理...") | |
with tempfile.TemporaryDirectory() as temp_dir: | |
file_path = file.name # 使用文件的原始路径 | |
if file_path.lower().endswith(".pdf"): | |
images = pdf_to_images(file_path) | |
num_pages = len(images) | |
results = [] | |
for i, image in enumerate(images): | |
progress((i + 1) / num_pages, desc=f"处理第 {i+1}/{num_pages} 页...") | |
img_path = os.path.join(temp_dir, f"page_{i+1}.png") | |
image.save(img_path, "PNG") | |
result = process_single_image(img_path, got_mode, ocr_color, ocr_box) | |
results.append(f"第 {i+1} 页结果:\n{result}") | |
final_result = "\n\n".join(results) | |
else: | |
final_result = process_single_image(file_path, got_mode, ocr_color, ocr_box) | |
progress(1, desc="处理完成") | |
return final_result | |
except Exception as e: | |
return f"错误: {str(e)}" | |
def process_single_image(image_path, got_mode, ocr_color, ocr_box): | |
result_path = f"{os.path.splitext(image_path)[0]}_result.html" | |
if "plain" in got_mode: | |
if "multi-crop" in got_mode: | |
res = model.chat_crop(tokenizer, image_path, ocr_type="ocr") | |
else: | |
res = model.chat(tokenizer, image_path, ocr_type="ocr", ocr_box=ocr_box, ocr_color=ocr_color) | |
return res | |
elif "format" in got_mode: | |
if "multi-crop" in got_mode: | |
res = model.chat_crop(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path) | |
else: | |
res = model.chat(tokenizer, image_path, ocr_type="format", ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path) | |
if os.path.exists(result_path): | |
with open(result_path, "r", encoding="utf-8") as f: | |
html_content = f.read() | |
encoded_html = base64.b64encode(html_content.encode("utf-8")).decode("utf-8") | |
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}" | |
preview = f'<iframe src="{data_uri}" width="100%" height="600px"></iframe>' | |
download_link = f'<a href="{data_uri}" download="result.html">下载完整结果</a>' | |
return f"{download_link}\n\n{preview}" | |
return "错误: 未知的OCR模式" | |
with gr.Blocks() as demo: | |
gr.Markdown("# OCR 图像识别") | |
file_input = gr.File(label="上传PDF或图片文件") | |
got_mode = gr.Dropdown( | |
choices=["plain texts OCR", "format texts OCR", "plain multi-crop OCR", "format multi-crop OCR", "plain fine-grained OCR", "format fine-grained OCR"], | |
label="OCR模式", | |
value="plain texts OCR", | |
) | |
with gr.Row(): | |
ocr_color = gr.Textbox(label="OCR颜色 (仅用于fine-grained模式)") | |
ocr_box = gr.Textbox(label="OCR边界框 (仅用于fine-grained模式)") | |
submit_button = gr.Button("开始OCR识别") | |
output = gr.HTML(label="识别结果") | |
submit_button.click(ocr_process, inputs=[file_input, got_mode, ocr_color, ocr_box], outputs=output) | |
if __name__ == "__main__": | |
demo.launch() | |