import base64 import os import tempfile import fitz import gradio as gr import spaces import torch from PIL import Image, ImageEnhance from transformers import AutoModel, AutoTokenizer model_name = "ucaslcl/GOT-OCR2_0" device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModel.from_pretrained(model_name, trust_remote_code=True, device_map=device) model = model.eval().to(device) def pdf_to_images(pdf_path): images = [] pdf_document = fitz.open(pdf_path) for page_num in range(len(pdf_document)): page = pdf_document.load_page(page_num) zoom = 10 # 增加缩放比例到10 mat = fitz.Matrix(zoom, zoom) pix = page.get_pixmap(matrix=mat, alpha=False) img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) # 增对比度 enhancer = ImageEnhance.Contrast(img) img = enhancer.enhance(1.5) # 增加50%的对比度 images.append(img) pdf_document.close() return images @spaces.GPU() def ocr_process(file, got_mode, ocr_color="", ocr_box="", progress=gr.Progress()): if file is None: return "错误:未提供文件" try: progress(0, desc="开始处理...") with tempfile.TemporaryDirectory() as temp_dir: file_path = file.name # 使用文件的原始路径 if file_path.lower().endswith(".pdf"): images = pdf_to_images(file_path) num_pages = len(images) results = [] for i, image in enumerate(images): progress((i + 1) / num_pages, desc=f"处理第 {i+1}/{num_pages} 页...") img_path = os.path.join(temp_dir, f"page_{i+1}.png") image.save(img_path, "PNG") result = process_single_image(img_path, got_mode, ocr_color, ocr_box) results.append(f"第 {i+1} 页结果:\n{result}") final_result = "\n\n".join(results) else: final_result = process_single_image(file_path, got_mode, ocr_color, ocr_box) progress(1, desc="处理完成") return final_result except Exception as e: return f"错误: {str(e)}" def process_single_image(image_path, got_mode, ocr_color, ocr_box): result_path = f"{os.path.splitext(image_path)[0]}_result.html" if "plain" in got_mode: if "multi-crop" in got_mode: res = model.chat_crop(tokenizer, image_path, ocr_type="ocr") else: res = model.chat(tokenizer, image_path, ocr_type="ocr", ocr_box=ocr_box, ocr_color=ocr_color) return res elif "format" in got_mode: if "multi-crop" in got_mode: res = model.chat_crop(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path) else: res = model.chat(tokenizer, image_path, ocr_type="format", ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path) if os.path.exists(result_path): with open(result_path, "r", encoding="utf-8") as f: html_content = f.read() encoded_html = base64.b64encode(html_content.encode("utf-8")).decode("utf-8") data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}" preview = f'' download_link = f'下载完整结果' return f"{download_link}\n\n{preview}" return "错误: 未知的OCR模式" with gr.Blocks() as demo: gr.Markdown("# OCR 图像识别") file_input = gr.File(label="上传PDF或图片文件") got_mode = gr.Dropdown( choices=["plain texts OCR", "format texts OCR", "plain multi-crop OCR", "format multi-crop OCR", "plain fine-grained OCR", "format fine-grained OCR"], label="OCR模式", value="plain texts OCR", ) with gr.Row(): ocr_color = gr.Textbox(label="OCR颜色 (仅用于fine-grained模式)") ocr_box = gr.Textbox(label="OCR边界框 (仅用于fine-grained模式)") submit_button = gr.Button("开始OCR识别") output = gr.HTML(label="识别结果") submit_button.click(ocr_process, inputs=[file_input, got_mode, ocr_color, ocr_box], outputs=output) if __name__ == "__main__": demo.launch()